
1 INTRODUCTION 

Digitalisation is foreseen as one of the strongest driv-

ers in order to achieve decarbonization goals of soci-

ety and more specifically of energy (IEA, 2017). A 

pivotal role in decarbonising the power is carried out 

by offshore renewable energies, in particular offshore 

wind. A cumulative installed capacity of offshore 

wind greater than 380 GW can be deployed by 2030 

and more than 2 000 GW by 2050 globally, according 

to (IRENA, 2021).  
(Ciuriuc et al., 2022) have identified some of the 

opportunities that digitalization can offer to the devel-
opment of the floating offshore wind sector.  Indeed, 
the market of floating offshore wind is supposed to 
achieve a market stage in the short-medium term, de-
creasing the cost of energy and narrowing the gap 
against fixed offshore wind (Wiser et al., 2021). For 
this reason, (Ciuriuc et al., 2022) have identified that 
the developments in three research area -namely, the 

optmisation of sensoring, development of digital 
twins and Building Information Models (BIMs)- can 
enhance cost reductions in the floating offshore wind, 
supporting the decision making process of the optimal 
maintenance strategy. Optimisation of maintenance is 
crucial to boost the reduction of costs in the opera-
tions of offshore wind farms (Peinado Gonzalo et al., 
2022). Preventive and condition-based approaches 
for maintenance are particularly important for reduc-
ing the number of more costly maintenance actions 
based on replacement of components, minimising 
system downtime as well as the risk of unexpected 
failures (Lu et al., 2018). The reliable and robust early 
fault detection in offshore wind turbines is therefore 
particularly relevant for guaranteeing the functional-
ity, operability, maintainability and survivability (in 
case of critical failures) of the offshore wind turbine 
(Liu et al., 2020; Pliego Marugán and García Már-
quez, 2019). Several studies exists for the fault detec-
tion of subsystems in (mostly onshore) wind turbine 
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ABSTRACT: Expert systems in industrial processes are modelled using physics-based approaches, data-driven 
models or hybrid approaches in which however the underlying physical models generally constitute a separate 
block with respect to the Artificial Intelligence (AI) technique(s).  
This work applies the novel concept of “imbrication” -a physics-based AI approach- to the mooring system of 
offshore renewable energy devices to achieve a complete integration of both perspectives. This approach can 
reduce the size of the training dataset and computational time while delivering algorithms with higher general-
ization capability and explicability. We first undertake the design of the mooring system by developing a sur-
rogate model coupled with a Bayesian optimiser. Then, we analyse the structural health monitoring of the moor-
ing system by designing a supervised Deep Neural Network architecture. 
Herein, we describe the characteristics of the imbrication process, analyse preliminary results of our investiga-
tion and provide considerations for orienting further research work and sector applicability. 



using Artificial Intelligence AI techniques, see for ex-
ample (García Márquez and Peinado Gonzalo, 2021) 
for an extensive review. In most cases, the data-based 
algorithms for the detection of failures in gearbox are 
combined with Supervisory Control and Data Acqui-
sition (SCADA) systems, and make use of Artificial 
Neural Networks (ANN) (Bangalore and Bertling 
Tjernberg, 2015) or fuzzy logic (Cross and Ma, 
2015). 

However, digitalization can influence positively 
the development of offshore wind sector not only in 
the detection of failures during operation of the plant 
(Clifton et al., 2022). The authors point out how the 
full lifecycle of a floating offshore wind farm can 
highly benefit from an appropriate use of the data. 
Heuristics of data, indeed, can solve or at least sup-
port the different phases in an offshore wind project, 
from resource characterisation to turbine design,  
plant layout, construction, commissioning, and 
maintenance and operations.  

However, the major criticisms in the adoption of 
Artificial Intelligence (AI) data-driven methods in 
the offshore wind sector consist in the lack of trans-
parency in the models (typical of any data-driven ap-
proach), as well as the lack of real in-situ data in op-
erational and damaged conditions, which is a problem 
specific to offshore wind sector. The infancy of the 
industry and the lack of a common framework for 
sharing the data represent, indeed, a huge obstacle in 
the development of data-driven approaches for off-
shore renewable energy. For this reason, traditional 
approaches based on physics-based modelling or 
empirical and practical experience represent the 
standard way for design and operate offshore wind 
platforms. Transferrable skills from other sectors, 
mainly oil and gas, are the greatest source of infor-
mation at the time of designing and planning opera-
tions for subsea power cables, mooring systems, and 
the support structure for floating offshore wind plat-
form, pending the establishment of recommended 
practice and standards specific for the sector. The 
Offshore Standards of DNV (DNV GL, 2015), for ex-
ample, is commonly adopted for the design of moor-
ing systems in floating offshore wind turbines, even 
if it often makes explicit reference to the oil and gas 
sector. 

Most of the physics-based approaches used in the 
offshore wind sector are based on differential equa-
tions, or analytical and semi-analytical derivations of 
physical principles. Generally, complex phenomena 
can be described -when possible- by complex phys-
ics-based models, requiring huge computational ef-
forts especially when high accuracy is required. This 
can be particularly cumbersome during the initial de-
sign stage, when the cost of decisions should account 
for the computational cost of each simulation, design 
optimisation (requiring many iterations) and design 
validation (requiring various load cases and simula-

tions to account for random wind & wave excita-
tions). In contrast, empirical and engineering ap-
proaches are generally faster, but subjected to greater 
uncertainty. 

Currently, the scientific community is focusing at-
tention on problems related to explicability of AI sys-
tems (Barredo Arrieta et al., 2020) (Qin and Chiang, 
2019). In the field of process industries, for example, 
the basic principles of physics have been encapsu-
lated into data-driven approaches to improve their 
transparency, explicability and deployment of the so-
lutions. In ocean engineering, only few example of 
such interlinking between these two perspective ex-
ists, as in (Ibarra-Berastegi et al., 2015) for resource 
forecasting. In this case, however, the physics-based 
model for wave prediction is coupled but not merged 
with a machine learning algorithm (random forest). A 
stronger integration of AI with physics-informed 
models, i.e. “physics-based AI” consists in a full im-
brication of data-driven models with the fundamen-
tal principles of physics (JiaXiaowei et al., 2021; 
Willard et al., 2020). To the best of the authors’ 
knowledge, there are no cases of imbrication of AI 
techniques with domain knowledge in the field of 
floating offshore wind in the literature. The imbrica-
tion process as shown in Figure 1 will try to combine 
both approaches to: 

Reduce the amount of data to train and validate the 
AI models, 

1. improve the explicability and interpretability of 

the results, and, 

2. provide higher accuracy or exploring wider solu-

tion spaces. 

In this work, we present the development of physics-
based AI algorithms to two cases of study relevant for 
the offshore wind sector. We have focused on the 
mooring system of a floating offshore wind turbine, 
and we are proposing two different AI approaches for 
solving two different problems. The first question we 
answer is:  
“Can we build a physics-based AI approach for sup-

porting the designers’ decisions  by accelerating, 
and reducing the number of simulations while inves-
tigating in a wider domain of technical solutions?” 

The second question we answer is:  
“Can we build a Neural Network architecture fed by 

a set of physical “features” derived from expert’s 
knowledge in order to identify the health status of 

the mooring system?” 
In this work, the case studies are described in Sec-

tion 2. Section 3 proposes our adopted methodologies 
and Section 4 reports some initial results of our inves-
tigation. Conclusions of this work are wrapped up in 
Section 5.  



 

Figure 1. Physic Based AI Models as a combination 
of domain knowledge and Artificial Intelligence 
techniques 

2  CASE STUDIES 

(Clifton et al., 2022) identified some areas in which 
AI could support the development of the offshore 
wind sector towards the cost reduction. During the 
lifecycle of an offshore wind project (see Figure 2), 
physical simulations are generally adopted at the ini-
tial stages of the project, i.e., before the installation of 
the asset, to conceptualise the design, carry out the 
engineering design, simulate the operation of the 
plant and plan the installation and maintenance activ-
ities. Data generally become available during and af-
ter the installation of the plant, from SCADA systems 
or other sensors at higher sampling frequency, used 
for increasing the redundancy in the measurements 
and condition monitoring purposes. In this work, we 
focus on a critical subsystem (the mooring system) 
and on two problems, corresponding to two different 
stages in an offshore renewable energy project (see 
Figure 2, in bold): 

1. The design of the mooring system of the float-
ing offshore platform. Design is a very com-
plex task, in which several design options must 
be analysed under a predefined number of de-
sign load cases (DLCs) based on environmen-
tal and operational conditions, and several sim-
ulations must be run to account statistically for 
the randomness of the excitations. The experi-
ence can drive towards the selection of some 
designs to be analysed instead of others, while 
the physical and constitutive laws rule the be-
haviour of the structural components.  

2. The identification of failures in a structural 
component in an operational floating offshore 
device (structural health monitoring, SHM). 
While direct measurements can continuously 
evaluate deformation, tensions and other quan-
tities representative of the condition status of 
structural components, the cost of sensors, 
communication and their reliability can consti-
tute a limit in practice. Virtual sensors can 
make up for the lack of an adequate number of 
sensors. However, they require a high-fidelity 

numerical model to represent the structural 
components as built and installed, as well as a 
deep knowledge of the boundary conditions. 
Civil engineering is focusing on Deep Learn-
ing approaches to detect failures in structures 
as bridges. However, algorithms may lack of 
transparency and physical interpretation.  

 

Figure 2. Main lifecycle phases in an offshore 
renewable energy project.  

 
In both cases, we investigate solutions for the same 
structural component, i.e., the mooring system of a 
floating offshore device. We consider simplified 
models, as the conclusions can be easily generalised 
for more realistic cases.  
We focus our research on the mooring system for two 
reasons: 

a. The costs (both inversion and operational 
ones) in mooring systems impact considerably 
the Levelised cost of Energy (LCOE) whatever 
the floating offshore wind concept is (Myhr et 
al., 2014). Physics-based AI may help in inves-
tigating a wider space of more economically 
viable solutions during the design of the sys-
tem (first case of study), Similarly, physics-
based AI can serve for the detection of failures 
and/or lower severity damages at earlier stages 
in order to improve operational costs (second 
case of study). 

b. It is one of the subsystems in which the expe-
rience of the oil and gas -especially in terms of 
design methodology- has been transposed al-
most directly to the offshore wind sector. The 
sector lacks its own methodologies, accounting 
for the different final functional requirements 
of the mooring systems. 

c. Especially at concept stage, the sector may 
need new tools for achieving quicker design 
convergence of the mooring systems, as the 
traditional design approach requires several 
lengthy simulations. 

d. Mooring system is a critical subsystem for the 
survivability of the entire offshore turbine. Di-
rect measurement of mooring system tension 
can become not reliable especially when the 



mooring line load is not very high and because 
of external conditions (temperature, salinity, 
etc.…) as well as friction, ageing of the trans-
mission cables and other phenomena related to 
degradation (COREWIND, 2020).   

2.1 Design of mooring systems for floating offshore 
renewable energy devices 

The design of mooring system in an offshore facility 
is a complex and iterative task that must satisfy vari-
ous requirements: 

- different external sources of excitations: 
wave, current and wind forces. The site of in-
stallation of the mooring system must be char-
acterised with appropriate parameters describ-
ing the metoceanic conditions of the site; 

- the coupling between the dynamics of the 
platform and the dynamics of the mooring 
system. In case of energy production systems 
(wave, wind, etc.…), the effect of the power 
take-off must also be included in the coupled 
system dynamic analysis; 

- a set of physical constraints (water depth, type 
of soil, etc.); 

- a set of design load cases DLCs must be de-
fined or assigned by general standards, offi-
cial rules or recommended practice as a func-
tion of the type of structure to be studied;  

- a set of minimum safety and functional re-
quirements to be respected under all the 
DLCs. 

The iterative task involves a set of characteristics 
of the mooring systems: 

- configuration: the number of mooring lines 
and their layout; 

- materials: rigid inextensible chain or materi-
als as synthetic ropes; in some cases, mixed 
lines (i.e., a combination of both) can be 
adopted; moreover, chains are grouped into 
classes based on the resistance; 

- the working principle: from taut to catenary 
systems, including semi taut intermediate 
conditions; 

- the anchoring to the seabed and the position 
of the fairleads (connection to a point in the 
device). 

  
The number of combinations of design parameters 

grows up exponentially. Furthermore, for the fulfil-
ment  of functional and safety requirements as well as 
because of the randomness of the excitation, a bur-
densome number of simulations for several DLCs, 
with a sufficient length in the time domain (up to 30 
hours per DLC) must be simulated to extract mean-
ingful statistics.  

The final decision on the mooring configuration to 
be chosen is therefore taken based on the optimisation 

of a proper multi-objective function, minimising costs 
(economic criteria)  and/or increasing the reliability. 

The process is generally simplified by expert do-
main knowledge, based on knowledge of the dynam-
ics of moored bodies and previous experience: 

(1) by reducing the layouts configuration to be 
considered  

(2) by reducing the selection of materials  
(3) by choosing and positioning anchor systems 

based on the soil types in the lease area. 
The scope of the traditional approach is huge, and 

it is practically impossible to explore the full domain 
of potential solutions, if only a solution exists. This is 
worsened by the computational cost of each time do-
main simulation, using either commercial or in-house 
software, which can be cumbersome even if based on 
quasi-static approaches.  

2.2 Structural Health Monitoring of mooring 
systems for floating offshore renewable energy 
devices 

Traditional condition monitoring techniques based 
on vibration analysis based on (Lifshitz and Rotem, 
1969) were developed in several sectors, as aero-
nautics and civil engineering (Doebling et al., 1998). 
They have been used in oil and gas sector as well 
(Chang et al., 2003; Prislin and Maroju, 2017). Still, 
in the oil and gas sector, some studies have been car-
ried out exploiting ANNs for detecting line breakage 
from motion sensors, as in (Siréta and Zhang, 2018). 
Operational Modal Analysis has been used in (Ruzzo 
et al., 2016) for the detection of anomalies in floating 
offshore spar wind turbine. 

However, more generally, fault detection of the 
mooring system in floating offshore wind turbines has 
been studied by (Bae et al., 2017; Ma et al., 2019), 
with the focus on the behaviour of the platform in case 
of broken lines. (Arockia Dhanraj et al., 2019; Mar-
tinez-Luengo et al., 2016) have investigated ap-
proaches based on thermal imaging and acoustic 
emission monitoring for detecting anomalous condi-
tions in the offshore wind platforms.  

At authors’ knowledge, apart from the simplified 
model developed by (Gorostidi and Nava, 2021), 
which has been extended in this work, there is no ex-
ample in literature in which the most conventional 
techniques for condition monitoring based on vibra-
tion and modal analysis are merged into AI algo-
rithms for early detection of failures in the mooring 
systems of offshore wind turbine. 

3 METHODS 

The methodology adopted for the two cases of study 
differ significantly one another, due to the different 
nature of the problems. In the design of mooring sys-



tems, indeed, we propose  a Bayesian optimizer cou-
pled with a solver for the time-domain dynamics of 
the mooring systems. Due to the computational bur-
den of the solver, then a surrogate model is also 
trained. In the problem of early detection of failures, 
we are training a Deep Learning algorithm for solving 
the classification problem. 

3.1 Design of mooring systems for floating offshore 
renewable energy devices 

The procedure of the imbrication of AI with expert 
knowledge and physical laws in the case of study for 
the design of mooring systems is shown in Figure 3. 

 
Figure 3. Physic Based AI Models as a combination 
of domain knowledge and Artificial Intelligence 
techniques 

 
The following stages can be distinguished: 
1) Training: this phase consists in building a sur-

rogate model of the coupled dynamics of the floating 
body with the mooring systems. For that purpose, the 
hydrodynamic solver HydroDyn (“OpenFAST,” 
2022) has been used coupled to MAP++ 
(“OpenFAST,” 2022), which is a quasi-static moor-
ing solver. Both solvers are open-source, and the cou-
pling between both has been carried out using 
OpenFAST(“OpenFAST,” 2022) with a zero-mass 
wind turbine. The idea behind the use of a quasi-static 
mooring solver instead of a dynamic solver is to re-
duce the computational cost of the simulation at the 
first stages. 

Experimental Design methods can guide the crea-
tion of this dataset to minimize its size and maximize 
the accuracy of the surrogate model. The surrogate 
model is trained on the generated data and is updated 
as more simulations become available 

2) Validation of the surrogate model: the vali-
dation phase is performed code-to-code, comparing 
the results in MAP ++ with the ones obtained by the 
surrogate models.  

3)  Optimisation: A sampling strategy based in 
Bayesian Optimisation is used together with the sur-
rogated model to find the set of input parameters that 
minimizes a given cost function within the given con-
strains.  

4) Knowledge transfer: The solution space is 
explored to detect insights that might be transferable 
to other context scenarios. Further, the exploitation of 
the surrogate model allows the user to explore new 
scenarios, being the model able to interpolate results. 
In this case, the user does not need to run a new sim-
ulation, contrary to what happens when using 
MAP++. This usage of the surrogate model is com-
plementary (and not subsequent) to step 3. 

In order to reduce the massive solution space, sev-
eral assumptions have been adopted for building the 
surrogate model. We have analysed a simple moored 
buoy, instead of considering an offshore wind turbine. 
The buoy shape is cylindrical, moored with regularly 
spaced simple catenary mooring lines, at a fixed water 
depth. The metocean conditions considered are based 
on the inverse first order model (IFORM) contour line 
at return period of 50 years in the test site BiMEP. 
Each sea state is characterised by a significant wave 
height Hs and a peak period Tp, with the implicit as-
sumption of JONSWAP spectrum. The effect of the 
current is also included, considering the current speed 
of 50-year return period. As a conservative assump-
tion, waves and current are assumed to be collinear. 
All the mooring lines are equal, organised in a regular 
pattern, angularly equidistant one another. The first 
mooring line is oriented downstream and aligned with 
the direction of the wave propagation when waves 
propagate in the 0 deg direction. The objective func-
tion corresponds to the economic criterion, i.e. the 
cost of the materials for the mooring lines.  

The design problem therefore can be summarised  
in the calculation of the linear mass LinMass and the 
total length of the each mooring line (equal to maxi-
mum suspended length max⁡( Ls[i](t)] )) so to min-
imise the cost function: 

𝐶𝑜𝑠𝑡 = 𝑁𝐿𝑖𝑛𝑒𝑠 ∗ 𝐿𝑖𝑛𝑀𝑎𝑠𝑠 ∗ max( 𝐿𝑠[𝑖](𝑡)] ) 
The optimisation problem is constrained. Some 

constraints are “strong”, i.e. a solution that does not 
satisfy the constraint is not technically acceptable: 

- 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝐿𝑜𝑎𝑑 ≤  𝐶𝑠 ∗ 𝑇𝐵𝐿, , 𝐶𝑠  is 
a security coefficient equal to 0.95  and 𝑇𝐵𝐿 
is the breaking load for the mooring lines, cal-
culated with the empirical formula extracted 
from Orcina manual (“Orcina Ltd - the home 
of OrcaFlex,” 2022). As defined in DNVGL-
ST-0119 (DNV GL, 2018), the characteristic 
load of the mooring lines is determined as fol-
lows:  

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 = 1.3 · 𝑇𝑀𝑃𝑀 + 1.75 · 𝑇𝑀𝐸𝐴𝑁 
Where 𝑇𝑀𝑃𝑀 = 𝜇 − 0.45𝜎 with 𝜇  and 𝜎 the 
mean and the standard deviation of the tension 
process.   



Some other constraints are “soft”, i.e. the selection 
of some variables lead to solution technically accepta-
ble but not preferable. In this case, solutions leading 
to very large offsets and long chains are penalised in 
the evaluation of the technical solution and optimisa-
tion but not excluded. 

The creation of the surrogate model involves do-
main knowledge in the definition of the assumptions, 
constraints, and limitation of the search space. 

3.2 Structural Health Monitoring of mooring 
systems for floating offshore renewable energy 
devices 

In this case study, the imbrication process consists in 
exploiting the domain knowledge -obtained from the 
most traditional techniques based on vibration analy-
sis- as initial step for definition of features in a con-
ventional supervised classification problem based on 
Deep Learning (Deep Neural Networks, DNNs), and 
it builds upon (Gorostidi and Nava, 2021). The 
method used in this section is described in (Gorostidi 
et al., 2022) and herein summarised. The imbrication 
process in this case of study is regulated by using a 
set of parameters derived from the displacements of 
the support structure of the floater of an offshore wind 
turbine in the frequency domain. Because of the lack 
of real data, synthetic data have been simulated. We 
are using a supervised approach to not only identify 
an anomalous behaviour but also to identify the dam-
age and potentially its severity. To address this last 
point, we set a minimum threshold in the damage se-
verity. 
In this project, the procedure consists of two steps: 

1. Dataset generation: This is a necessary step 
for training and validation purposes, as no real 
data are available. The motions in six degrees 
of freedom (dofs) of a floating offshore wind 
platform have been simulated under a wide 
range of metoceanic conditions and structural 
conditions. Then, after extracting the power 
spectral densities (PSDs) of the signals, mean-
ingful quantities, such as standard deviation, 
peak frequencies, have been extracted. The da-
taset is built with those statistics and the appro-
priate label based on the damage condition and 
severity. Simulations have been carried out in 
OpenFAST  considering the OC4-DeepCwind 
platform (Robertson et al., 2014). In this case, 
as in (Gorostidi et al., 2022), two health condi-
tions have been considered: undamaged condi-
tions and biofouling increase of mass, adding 
up to 10% of the total mass of the mooring sys-
tems. A total of 3140 three-hour-long simula-
tions were carried out in a range of significant 
wave height from 4m to 10m, peak period var-
ying from 5 s to 15s and wind speed from 2 m/s 
to 15 m/s. A total of 24 features were consid-

ered (mean, standard deviation, peak fre-
quency and zero momentum o the response for 
each degree of freedom). Metoceanic parame-
ters are disregarded in the dataset.  

 
2. Network design, training and validation: we 

have designed a four-layer simple feedfor-
ward, fully connected deep neural network 
(see for example Figure 4). At the time of writ-
ing, the model is being extended and improved 
from (Gorostidi et al., 2022). In that work, we 
considered 24 inputs and 2 outputs (binary, ex-
pressing if the sample is in undamaged condi-
tion or in presence of biofouling). The hy-
perparameters for training are shown in Table 
1. We have used 75% of the dataset for training 
and 25% for validation purposes. 

 
Figure 4. Example of the adopted topology of Neu-
ral Network (figure from (Gorostidi et al., 2022) 

 
Table 1. Hyperpameters used in the training stage. 

Parameter Description 

Neurons per layer 24, 16, 12, 2 

Activation functions RLU, Softmax 

Layer connection All dense layers 

Optimiser and learning 

rate 
Adam, 0.0001 

Cost function Binary cross-entropy 

Early-stop criterion and 

patience 

Validation loss, 500 

epochs 

Training epochs 10000 

4 RESULTS 

For both cases of study, the models are still under de-
velopment and/or improvement, and thus the results 
herein presented are to be intended to be preliminary, 
partial and/or to be further investigated.  



4.1 Design of mooring systems for floating offshore 
renewable energy devices 

The first analyses we have carried out show that the 
surrogate model reduces computational time of more 
than 90% for the full stack of simulations of one de-
sign of mooring system. Indeed, the training of the 
surrogate model we are developing guides the simu-
lations towards the sea states leading to more extreme 
conditions in terms of response for the mooring lines, 
reducing the number of sea states in the IFORM con-
tour line to be analysed. This is particularly encour-
aging as in a notably shorter time, the Bayesian opti-
miser will explore a larger number of different 
solutions to optimise against the independent varia-
bles of the design, i.e. the number of mooring lines, 
their linear weight and length.  

4.2 Structural Health Monitoring of mooring 
systems for floating offshore renewable energy 
devices 

As in (Gorostidi et al., 2022) the authors have pointed 
out that (see Figure 5): 

- No major overfitting issues were affecting the 
performance of the algorithm; 

- The accuracy reached 95.7% after around 
6000 epochs. 

Results were obtained and a relatively small da-
taset, with only two conditions examined and with 3-
hour-long simulations. However, as the first results 
are encouraging, the model will be further expanded, 
including further failure modes, sensitivity analyses 
on the duration of the samples and severity of the 
damage. 

5 CONCLUSIONS 

We investigated the “imbrication” process of AI tech-
niques with physics-based models for the design and 
the early detection of failures in mooring systems in 
offshore wind systems. While the models are still un-
der development as part of a longer project, the initial 
results are encouraging: 

 

a 

b 
Figure 5. Evolution of training and validation (a) 
loss and (b) accuracy as training progresses. (figure 
from (Gorostidi et al., 2022) 

 
1) In the case of the design of mooring systems, 

the Bayesian optimisation coupled with a sur-
rogate model for the analysis of mooring sys-
tems seems to notably reduce the computa-
tional time; this allows the investigation of a 
much larger design solution space in a shorter 
time. The “expert” knowledge is encapsulated 
while constructing the surrogate model, ac-
counting for domain practice and physical 
constraints.  

2) In the case of SHM of mooring systems, the 
DNN architecture fed with spectral character-
istics of the response provides a reliable solu-
tion to the identification and classification of 
the failures in the mooring systems. The se-
lection of the input variables, preprocessed 
from the data, is based on expert knowledge. 

Both the models attack the reduction of costs, 
providing solutions aimed at reducing the capital 
expenditure (cheaper mooring systems) as well as 



the operational expenditure (detection of failures 
and degradation at early stages opening the way to 
implement more effective preventive maintenance 
strategies).  

The developed approaches are affected by lim-
itations. In the first case of study, we have applied 
several simplifications at the time of building the 
surrogate model. In the second case of study, the 
solution is based on synthetic data, and it is not 
provided online at real time. Nevertheless, the ini-
tial results are encouraging. In the design problem, 
the selection of a mooring layout is achieved in a 
much shorter time; in the SHM problem, such a 
DNN is able to identify a damaged condition with 
a good accuracy.  
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