1,633 research outputs found

    Instability of fixed, low-thrust drag compensation

    Get PDF
    FORCED drag compensation using continuous low-thrustpropulsion has been considered for satellites in low Earth orbit. This simple, but nonoptimal, scheme merely requires that the thrust vector is directed opposite to the drag vector and that the magnitude of the two are equal. In principle, the drag force acting on the spacecraft could be determined onboard using accurate accelerometers. However, for small, low-cost spacecraft such sensors may beunavailable. An alternative strategy would be to Ĺ˝ x the thrust magnitude equal to the expected air drag that would be experienced by the spacecraft. The thrust levelwould be periodically updated based on ground-based orbit determination. In this Engineering Note, it is shown that such a forced circular orbit with a Ĺ˝ fixed thrust levelis exponentially unstable for all physically reasonable atmosphere models

    Introduction to Modified Gravity and Gravitational Alternative for Dark Energy

    Full text link
    We review various modified gravities considered as gravitational alternative for dark energy. Specifically, we consider the versions of f(R)f(R), f(G)f(G) or f(R,G)f(R,G) gravity, model with non-linear gravitational coupling or string-inspired model with Gauss-Bonnet-dilaton coupling in the late universe where they lead to cosmic speed-up. It is shown that some of such theories may pass the Solar System tests. On the same time, it is demonstrated that they have quite rich cosmological structure: they may naturally describe the effective (cosmological constant, quintessence or phantom) late-time era with a possible transition from decceleration to acceleration thanks to gravitational terms which increase with scalar curvature decrease. The possibility to explain the coincidence problem as the manifestation of the universe expansion in such models is mentioned. The late (phantom or quintessence) universe filled with dark fluid with inhomogeneous equation of state (where inhomogeneous terms are originated from the modified gravity) is also described.Comment: LaTeX file, 21 pages, references are added, lectures for 42 Karpacz Winter School on Theor Physic

    Low temperature magnetization and the excitation spectrum of antiferromagnetic Heisenberg spin rings

    Full text link
    Accurate results are obtained for the low temperature magnetization versus magnetic field of Heisenberg spin rings consisting of an even number N of intrinsic spins s = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 with nearest-neighbor antiferromagnetic (AF) exchange by employing a numerically exact quantum Monte Carlo method. A straightforward analysis of this data, in particular the values of the level-crossing fields, provides accurate results for the lowest energy eigenvalue E(N,S,s) for each value of the total spin quantum number S. In particular, the results are substantially more accurate than those provided by the rotational band approximation. For s <= 5/2, data are presented for all even N <= 20, which are particularly relevant for experiments on finite magnetic rings. Furthermore, we find that for s > 1 the dependence of E(N,S,s) on s can be described by a scaling relation, and this relation is shown to hold well for ring sizes up to N = 80 for all intrinsic spins in the range 3/2 <= s <= 7/2. Considering ring sizes in the interval 8 <= N <= 50, we find that the energy gap between the ground state and the first excited state approaches zero proportional to 1/N^a, where a = 0.76 for s = 3/2 and a = 0.84 for s = 5/2. Finally, we demonstrate the usefulness of our present results for E(N,S,s) by examining the Fe12 ring-type magnetic molecule, leading to a new, more accurate estimate of the exchange constant for this system than has been obtained heretofore.Comment: Submitted to Physical Review B, 10 pages, 10 figure

    Endovascular Repair of Aortic Pseudoaneurysms

    Get PDF

    Circulating interleukin-10 and risk of cardiovascular events: a prospective study in the elderly at risk

    Get PDF
    &lt;p&gt;&lt;b&gt;Objective:&lt;/b&gt; The goal of this study was to examine the association of the antiinflammatory interleukin-10 (IL-10) with risk of cardiovascular disease (CVD).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and Results:&lt;/b&gt; In the PROSPER (PROspective Study of Pravastatin in the Elderly at Risk) cohort, we related baseline concentrations of circulating IL-10 to risk of CVD events in a nested case (n=819)-control (n=1618) study of 3.2 years of follow-up. Circulating IL-10 showed few strong associations with classical risk factors but was positively correlated with IL-6 and C-reactive protein. IL-10 was positively associated with risk of CVD events (odds ratio [OR] 1.17, 95% CI 1.05 to 1.31 per unit increase in log IL-10) after adjusting for classical risk factors and C-reactive protein. Furthermore, IL-10 was associated more strongly with CVD risk among those with no previous history of CVD (OR 1.42, 95% CI 1.18 to 1.70), compared with those with previous CVD (OR 1.04, 95% CI 0.90 to 1.19; P=0.018). Overall, IL-10 showed a modest ability to add discrimination to classical risk factors (C-statistic +0.005, P=0.002).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusion:&lt;/b&gt; Baseline circulating levels of the antiinflammatory IL-10 are positively associated with risk of CVD among the elderly without prior CVD events, although the association is less evident in those with a history of CVD. Additional epidemiological and mechanistic studies investigating the role of IL-10 in CVD are warranted.&lt;/p&gt

    Metatarsophalangeal joint pain in psoriatic arthritis: a cross-sectional study

    Get PDF
    Methods. Thirty-four consecutive patients with PsA (mean age 45.3 years, 65% female, mean disease duration 9.9 years) and 22 control participants (mean age 37.9 years, 64% female) underwent clinical and US examination to determine the presence of pain, swelling, synovitis, erosions, effusions and submetatarsal bursae at the MTP joints. Mean barefoot peak plantar pressures were determined at each MTP joint. Levels of pain, US-determined pathology and peak pressures were compared between groups. Binary logistic regression was used to identify demographic, clinical examination-derived, US-derived and plantar pressure predictors of pain at the MTP joints in the PsA group. Results. The presence of pain, deformity, synovitis, erosions (P &amp;lt; 0.001) and submetatarsal bursae and peak plantar pressure at MTP 3 (P &amp;lt; 0.05) were significantly higher in the PsA group. MTP joint pain in PsA was independently predicted by high BMI, female gender and the presence of joint subluxation, synovitis and erosion. Conclusion. These results suggest local inflammatory and structural factors, together with systemic factors (gender, BMI), are predominantly responsible for painful MTP joints in PsA, with no clear role for plantar pressure characteristics

    Addressing the carbon-crime blind spot : a carbon footprint approach

    Get PDF
    Governments estimate the social and economic impacts of crime, but its environmental impact is largely unacknowledged. Our study addresses this by estimating the carbon footprint of crime in England and Wales and identifies the largest sources of emissions. By applying environmentally extended input-output analysis–derived carbon emission factors to the monetized costs of crime, we estimate that crime committed in 2011 in England and Wales gave rise to over 4 million tonnes of carbon dioxide equivalents. Burglary resulted in the largest proportion of the total footprint (30%), because of the carbon associated with replacing stolen/damaged goods. Emissions arising from criminal justice system services also accounted for a large proportion (21% of all offenses; 49% of police recorded offenses). Focus on these offenses and the carbon efficiency of these services may help reduce the overall emissions that result from crime. However, cutting crime does not automatically result in a net reduction in carbon, given that we need to take account of potential rebound effects. As an example, we consider the impact of reducing domestic burglary by 5%. Calculating this is inherently uncertain given that it depends on assumptions concerning how money would be spent in the absence of crime. We find the most likely rebound effect (our medium estimate) is an increase in emissions of 2%. Despite this uncertainty concerning carbon savings, our study goes some way toward informing policy makers of the scale of the environmental consequences of crime and thus enables it to be taken into account in policy appraisals

    Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment

    Get PDF
    Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications

    Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon

    Get PDF
    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Crucial to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilaton arises naturally in the context of string theory, we study the effect of coupling dilaton to Maxwell field on the stability of flat charged AdS black holes. In particular, we study the stability of Gao-Zhang black holes, which are locally asymptotically anti-de Sitter. We find that for dilaton coupling parameter α\alpha > 1, flat black holes are stable against brane pair production, however for 0 < α\alpha < 1, the black holes eventually become unstable as the amount of electrical charges is increased. Such instability however, behaves somewhat differently from that of flat Reissner-Nordstr\"om black holes. In addition, we prove that the Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with flat event horizon (at least in 5-dimension) is always logarithmically divergent at infinity for finite values of α\alpha, and is finite and positive in the case α\alpha tends to infinity . We also comment on the robustness of our result for other charged dilaton black holes that are not of Gao-Zhang type.Comment: Fixed some confusions regarding whether part of the discussions concern electrically charged hole or magnetically charged one. No changes to the result
    • …
    corecore