2,796 research outputs found

    Small neutrino masses due to R-symmetry breaking for a small cosmological constant

    Full text link
    We describe a class of supersymmetric models in which neutrinos are kept light by an R-symmetry. In supergravity, R-symmetry must be broken to allow for a small cosmological constant after supersymmetry breaking. In the class of models described here, this R-symmetry breaking results in the generation of Dirac neutrino masses, connecting the tuning of the cosmological constant to the puzzle of neutrino masses. Surprisingly, under the assumption of low-scale supersymmetry breaking and superpartner masses close to a TeV, these masses are independent of the fundamental supersymmetry-breaking scale, and accommodate the correct magnitude. This offers a novel explanation for the vastly different scales of neutrino and charged fermion masses. These models require that R-symmetric supersymmetry exists at the TeV scale, and predict that neutrino masses are purely Dirac, implying the absence of neutrino-less double beta-decay. Interesting collider signals can arise due to charged scalars which decay leptonically, with branching ratios determined by the neutrino mixing matrix.Comment: 6 pages, 2 figures. v2 matches published versio

    Development and performance of a HemeLB GPU code for human-scale blood flow simulation

    Get PDF
    In recent years, it has become increasingly common for high performance computers (HPC) to possess some level of heterogeneous architecture - typically in the form of GPU accelerators. In some machines these are isolated within a dedicated partition, whilst in others they are integral to all compute nodes - often with multiple GPUs per node - and provide the majority of a machine's compute performance. In light of this trend, it is becoming essential that codes deployed on HPC are updated to execute on accelerator hardware. In this paper we introduce a GPU implementation of the 3D blood flow simulation code HemeLB that has been developed using CUDA C++. We demonstrate how taking advantage of NVIDIA GPU hardware can achieve significant performance improvements compared to the equivalent CPU only code on which it has been built whilst retaining the excellent strong scaling characteristics that have been repeatedly demonstrated by the CPU version. With HPC positioned on the brink of the exascale era, we use HemeLB as a motivation to provide a discussion on some of the challenges that many users will face when deploying their own applications on upcoming exascale machines

    The matricial relaxation of a linear matrix inequality

    Full text link
    Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensaetze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in the source file, or see http://srag.fmf.uni-lj.si

    Regularity of prime ideals

    Get PDF
    We answer several natural questions which arise from a recent paper of McCullough and Peeva providing counterexamples to the Eisenbud\u2013Goto Regularity Conjecture. We give counterexamples using Rees algebras, and also construct counterexamples that do not rely on the Mayr\u2013Meyer construction. Furthermore, examples of prime ideals for which the difference between the maximal degree of a minimal generator and the maximal degree of a minimal first syzygy can be made arbitrarily large are given. Using a result of Ananyan-Hochster we show that there exists an upper bound on regularity of prime ideals in terms of the multiplicity alone

    Oral chronic graft-versus-host disease (GvHD) in Australia: clinical features and challenges in management

    Get PDF
    Data from the Australasian Bone Marrow Transplant Recipient Registry show a steady increase in the number of allogeneic haemopoietic stem cell transplantations (HSCT) performed annually in Australia and New Zealand. In 2012, 629 allogeneic HSCT were performed. Allogeneic HSCT is associated with numerous potential complications, including chronic graft-versus-host disease (cGVHD). The oral cavity is one of the most frequent sites affected by cGvHD, often leading to significant disability and reduced quality of life. Management strategies are often complex, of variable efficacy and influenced by the availability of various therapeutic agents, access to compounding pharmacies and associated costs. This paper summarises the current status of allogeneic HSCT in Australia and New Zealand with a focus on oral cGvHD and the associated challenges in its management. Key words: graft-versus-host disease, oral mucosa, saliva

    Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)

    Full text link
    Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE) CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which backbone twists take place with weakened pi-stackings. Two-dimensional exchange 2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is due to the one-dimensional diffusion-like motion of backbone conformational modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was approximately 10^7 times larger than that estimated by 2DEX NMR measurements. These results suggest that there exists anomalous dispersion of modulation waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is responsible for the behavior of proton longitudinal relaxation time. On the other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of methyl groups that is associated with backbone twists. From proton T_1 and T_2 measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol, respectively. These were in agreement with 3.0 kcal/mol determined by Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed chemical shielding calculation of the methyl-carbon in order to understand chemical shift tensor behavior, leading to the fact that a quasi-ordered phase coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.

    Defining forgiveness: Christian clergy and general population perspectives.

    Get PDF
    The lack of any consensual definition of forgiveness is a serious weakness in the research literature (McCullough, Pargament &amp; Thoresen, 2000). As forgiveness is at the core of Christianity, this study returns to the Christian source of the concept to explore the meaning of forgiveness for practicing Christian clergy. Comparisons are made with a general population sample and social science definitions of forgiveness to ensure that a shared meaning of forgiveness is articulated. Anglican and Roman Catholic clergy (N = 209) and a general population sample (N = 159) completed a postal questionnaire about forgiveness. There is agreement on the existence of individual differences in forgiveness. Clergy and the general population perceive reconciliation as necessary for forgiveness while there is no consensus within psychology. The clergy suggests that forgiveness is limitless and that repentance is unnecessary while the general population suggests that there are limits and that repentance is necessary. Psychological definitions do not conceptualize repentance as necessary for forgiveness and the question of limits has not been addressed although within therapy the implicit assumption is that forgiveness is limitless.</p

    Cyclic Statistics In Three Dimensions

    Full text link
    While 2-dimensional quantum systems are known to exhibit non-permutation, braid group statistics, it is widely expected that quantum statistics in 3-dimensions is solely determined by representations of the permutation group. This expectation is false for certain 3-dimensional systems, as was shown by the authors of ref. [1,2,3]. In this work we demonstrate the existence of ``cyclic'', or ZnZ_n, {\it non-permutation group} statistics for a system of n > 2 identical, unknotted rings embedded in R3R^3. We make crucial use of a theorem due to Goldsmith in conjunction with the so called Fuchs-Rabinovitch relations for the automorphisms of the free product group on n elements.Comment: 13 pages, 1 figure, LaTex, minor page reformattin

    Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet

    Full text link
    We report the discovery of a transiting, Rp = 4.347+/-0.099REarth, circumbinary planet (CBP) orbiting the Kepler K+M Eclipsing Binary (EB) system KIC 12351927 (Kepler-413) every ~66 days on an eccentric orbit with ap = 0.355+/-0.002AU, ep = 0.118+/-0.002. The two stars, with MA = 0.820+/-0.015MSun, RA = 0.776+/-0.009RSun and MB = 0.542+/-0.008MSun, RB = 0.484+/-0.024RSun respectively revolve around each other every 10.11615+/-0.00001 days on a nearly circular (eEB = 0.037+/-0.002) orbit. The orbital plane of the EB is slightly inclined to the line of sight (iEB = 87.33+/-0.06 degrees) while that of the planet is inclined by ~2.5 degrees to the binary plane at the reference epoch. Orbital precession with a period of ~11 years causes the inclination of the latter to the sky plane to continuously change. As a result, the planet often fails to transit the primary star at inferior conjunction, causing stretches of hundreds of days with no transits (corresponding to multiple planetary orbital periods). We predict that the next transit will not occur until 2020. The orbital configuration of the system places the planet slightly closer to its host stars than the inner edge of the extended habitable zone. Additionally, the orbital configuration of the system is such that the CBP may experience Cassini-States dynamics under the influence of the EB, in which the planet's obliquity precesses with a rate comparable to its orbital precession. Depending on the angular precession frequency of the CBP, it could potentially undergo obliquity fluctuations of dozens of degrees (and complex seasonal cycles) on precession timescales.Comment: 48 pages, 13 figure
    corecore