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In light of this trend, it is becoming essential that codes deployed on HPC are updated to execute on
accelerator hardware. In this paper we introduce a GPU implementation of the 3D blood flow simulation

Keywords:

Blood flow modelling code HemeLB that has been developed using CUDA C++. We demonstrate how taking advantage of NVIDIA
Lattice Boltzmann method GPU hardware can achieve significant performance improvements compared to the equivalent CPU only
High performance computing code on which it has been built whilst retaining the excellent strong scaling characteristics that have

been repeatedly demonstrated by the CPU version. With HPC positioned on the brink of the exascale era,
we use HemeLB as a motivation to provide a discussion on some of the challenges that many users will
face when deploying their own applications on upcoming exascale machines.

Program summary

Program Title: HemeLB (HemePure_GPU)
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Developer’s repository link: https://github.com/UCL-CCS/HemePure-GPU

Licensing provisions: LGPLv3
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Nature of problem: The geometric characteristics of arteries and veins throughout the human body can
vary considerably between individuals. This is particularly true for patients with cardiovascular disease.
Accurately resolving the dynamics of blood flow within such domains requires a three-dimensional
technique that can replicate such variations at high fidelity. The study of full human-scale domains
for physiologically relevant timeframes further demands a tool that can be executed efficiently on the
advancing technological frameworks available on modern high performance computers.

Solution method: HemeLB uses the lattice Boltzmann method [1,2,3,4] to simulate blood flow in
complex, three-dimensional sparse vasculatures. A single relaxation time approximation is used [5].
Solid boundaries are modelled using simple bounce-back boundary conditions [6]. Blood flow is driven
by applying either velocity or pressure boundary conditions [7]. The localised solution kernels of the
algorithm allow for efficient parallelisation of the method to very high core counts. This version of
HemeLB outlines the conversion of the code to allow execution on NVIDIA GPUs, currently the most
widely used architecture in ultra high performance computers, whilst retaining its capacity for strong
scaling to very large core counts.
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1. Introduction

In the field of computational biomedicine, significant effort is
being invested into the development of the virtual human - a
digital twin of an individual’s physiology. A full virtual human
would allow clinicians, scientists and healthcare professionals to
make use of patient-specific simulations and predictive models to
optimise the care provided to an individual at all stages of life.
Conducting simulations on virtual humans will contribute in a ma-
jor way to our understanding of the several body systems and
processes involved, such as the cardiovascular system and the cir-
culatory physiology.

Several techniques and models have been developed in this
direction, with varying dimensionality; from zero to three dimen-
sional models, each category has its limitations and range of appli-
cation [1]. Zero-dimensional or lumped parameter models provide
a way of evaluating the hemodynamic interactions among the car-
diovascular organs. These models, however, ignore any spatial vari-
ation of the fundamental variables, such as pressure and flow, and
assume a uniform distribution within the system at a given time.
Higher dimensional models on the other hand take into account
the spatial variation of these parameters.

This is important, for example, for simulating the blood flow
through vascular networks, which has been conducted widely us-
ing both 1D and 3D solvers [2-8]. Both approaches have advan-
tages and disadvantages relating to implementation, resolution of
output, assumptions made, and solution time. For example, 1D
models are far simpler to implement and faster to solve, especially
as networks get larger; however, the approach makes significant
assumptions about the geometric properties of a vessel and the
detail of flow patterns obtained is limited. On the other hand, 3D
models can generate highly detailed flow fields in patient-specific
representations of vessels but do so with greater computational
effort and significantly increased quantities of data in/output. A
combination of methods is also feasible or desired in some cases.
In multi-scale models, low dimensional models are increasingly
used to provide the boundary conditions for the more sophisti-
cated, complex and potentially patient-specific 3D models [1].

The increasing performance, capacity and availability of com-
puting architectures means that 3D models of large and detailed
geometries can be studied in a tractable time frame. This is fur-
ther enhanced when the 3D code scales efficiently up to large core
counts. This is extremely useful and of paramount importance, as
conducting simulations on virtual humans will demand codes that
can both execute and scale efficiently on large-scale supercomput-
ers.

The purpose of this paper is to provide another step forward
in the effort to make the virtual human a reality by taking advan-
tage of the accelerators such as Graphics Processing Units (GPUs)
that are becoming commonplace on supercomputers globally. We
do this by developing a GPU version of HemeLB [9,10], a high-
performance lattice Boltzmann (LB) based fluid flow solver for
simulating blood flow on patient specific images obtained from

medical scans. HemeLB has been optimized for the sparse geome-
tries characteristic of vascular trees and has demonstrated strong
scaling on hundreds of thousands of CPU cores on non-accelerated
HPC including Blue Waters and SuperMUC-NG. Our vision for this
work is to demonstrate HemeLB’s capacity for execution on the
largest and fastest current generation machines and prepare it for
upcoming exascale machines. In both of these settings, a consid-
erable part of the performance is sourced from the presence of
accelerators on the nodes, typically GPUs. Here we present our im-
plementation of a GPU version of HemeLB and report performance
and scaling analysis up to tens of thousands of GPUs.

The paper is organised as follows. The remainder of this intro-
ductory section is devoted to related work on modelling aspects
and the lattice Boltzmann method. Section 2 briefly presents the
details of the lattice Boltzmann method used for simulating 3D
blood flow through vascular geometries. Section 3 is devoted to
the GPU code implementation. Large scale performance compar-
ison of the CPU and GPU versions of HemeLB is carried out in
section 4 focusing on their strong scaling performance; we also
examine which metrics should be used in assessing this perfor-
mance, given the inherent differences between CPUs and GPUs and
how HPC platforms are configured. Section 5 examines challenges
related to running massively parallel simulations at the emerging
exascale, while section 6 presents a simple example of simulat-
ing blood flow using HemeLB_GPU. Finally, future work plans and
conclusions drawn from this work are reported in sections 7 & 8
respectively.

1.1. Background - related work

HemelLB is a LB fluid flow solver for simulating blood flow. The
lattice Boltzmann method (LBM) is an alternative to classical Com-
putational Fluid Dynamics (CFD) methods for numerically solving
the Navier-Stokes equations. It is increasingly gaining interest in
various scientific areas, due to its simplicity, scalability on paral-
lel computers, ease of handling complex and sparse geometries, as
well as incorporating multi-scale, multi-physics phenomena.

Various LB based, high performance codes, have been developed
by several research groups, including Palabos [11], walLBerla [12,13],
MUPHY [14,15], HARVEY [7,16] and stlbm [17]. These codes target
different types of hardware, either many-core CPU platforms (Pal-
abos, HARVEY), or heterogeneous many-core CPU/GPU platforms
(Palabos, MUPHY, walLBerla). A hardware-agnostic implementation
strategy for LB simulations on homogeneous and heterogeneous
many-core systems has been recently proposed by Latt et al. [17]
based solely on C++17 Parallel Algorithms.

LBM is well suited for acceleration on GPUs, which use the sin-
gle instruction, multiple data (SIMD) paradigm, as LBM applies the
same set of instructions on all fluid sites. A significant amount of
work discusses GPU implementations of the LBM, both in dense
geometries, where the majority of the lattice points are fluid sites
[15,18-21], but also in complex, sparse geometries, like blood flow
in vascular geometries [22-25] or flow in porous media [26,27].
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As LB based codes are heavily data intensive and memory
bound algorithms, significant effort has been devoted on data stor-
age schemes and memory access patterns [17,20,25,28-31]. There
are three issues regarding data storage within the LBM framework:
(i) how the three-dimensional lattice points are ordered in a one-
dimensional array, (ii) how the particle distribution functions (at
the heart of LBM, see section 2.2) are stored and accessed from
memory and (iii) how the geometric characteristics of the sim-
ulation domain are preserved in a way that minimizes memory
requirements, which is extremely important for sparse geometries
like vascular domains. The above issues are denoted as “memory
ordering”, “memory/data layout” and “memory addressing” respec-
tively. A discussion on these different data storage schemes for
GPUs is provided in [30]; a comparison of some of these ap-
proaches on various platforms, homogeneous and heterogeneous,
has been carried out by Latt et al. [17], highlighting the code’s
performance dependency on the memory access patterns and the
architecture of the hardware used.

Coupled schemes have been also developed. Feiger et al. [32]
used a combination of machine learning and massively CPU par-
allel LB fluid simulations using HARVEY [7] to predict the effects
of physiological factors on hemodynamics in patients with coarc-
tation of the aorta. Massive coupled LB-MD multi-GPU simula-
tions, studying proteins in crowding conditions, were carried out
by Bernaschi et al. [15], demonstrating excellent scalability up to
18 000 K20X Nvidia GPUs.

Challenges related to massively parallel CPU simulations of
hemodynamics are discussed by Randles et al. [7]. These include
the memory footprint, I/O bandwidth, scalability and load imbal-
ance. The authors extended the capabilities of HARVEY [16] to
address the above issues and ran LB simulations on 1,572,864 CPU
cores of the IBM Blue Gene/Q (Lawrence Livermore National Labo-
ratory (LLNL)). Load imbalance was the major factor identified for
the deviation from ideal strong scaling observed. We will discuss
further challenges at the emerging exascale in section 5.

2. Numerical methods

In this paper we use the LBM to solve 3D blood flow through a
vascular geometry. A brief outline of this approach is presented in
this section.

2.1. Equations of motion

Modelling 3D blood flow is a problem of computational fluid
dynamics. The blood consists primarily of blood cells suspended in
blood plasma. From a rheological perspective, blood plasma has
been considered a Newtonian fluid, while whole blood behaves
as a non-Newtonian fluid; whole blood, however, follows Newto-
nian behaviour when the shear rate exceeds 100 s~!. Therefore,
for flows in large blood vessels, e.g. aorta or large arteries, the ef-
fect of the non-Newtonian nature of blood is not significant and
considering the flow as Newtonian is a satisfactory assumption.

The hydrodynamic incompressible equations of motion that de-
scribe the blood flow are the continuity, eq. (1), and the Navier-
Stokes, eq. (2), equations [1,6,33]

00 + dx(pug) =0, (1)
3 (PUa) + 3 (PUalip) = —0up + 3p [1 (Fptia + datip)] . (2)
where u, p, p, n are the fluid velocity, density, pressure and dy-
namic viscosity respectively.

2.2. The lattice Boltzmann method

It is not the purpose of this paper to give a full and detailed
description of the LBM, as this is widely available in the literature
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e.g. [34-38]. We will, however, summarise the key features of our
implementation.

To solve the hydrodynamic equations, eqs. (1), (2), with the
LBM, the domain is partitioned into a Cartesian grid with a con-
stant spacing of Ax in all 3D directions. At each nodal location,
X, a discrete set of distribution functions, fij(x,t), is assigned to
represent the amount of fluid moving in direction i at time t.
In this work, we use a three-dimensional model with 19 dis-
crete velocity vectors (D3Q19), where fluid can stay at the cur-
rent location or move to one of the 18 neighbours described
by the sets: i=1-6 [(+1,0,0),(0,£1,0),(0,0,£1)) and i =
7 —18 [(£1,£1,0), (£1,0,+1), (0, £1, +1)]. The flow described
by fi(x,t) evolves over the time step At

Collision step:  f/(x,t) = fi(x,t) — %( fix,t) = fHAx, 1),
(3a)
fix+ At t+ At) = fl(x,t). (3b)

Eq. 3 states that the time evolution of the distribution functions
proceeds in two steps: (a) a collision step with f; relaxing towards
their equilibrium state fieq (Maxwell-Boltzmann distribution) over
a timescale 7, within a single relaxation time approximation (BGK
collision kernel) [39], giving locally the updated or post-collisional
distribution functions f/ and (b) a streaming step with velocity ¢;
to the neighbouring lattice point X + ¢jAt at the next time step
t+ At.

The equilibrium distributions functions are defined as a power
series in the velocity

Streaming step:

(4)

G-u  (ci-u? IUI2>
c: )
with the coefficients, w;, for the D3Q19 model, being 1/3 for i =0
(the source node), 1/18 for i=1—6 and 1/36 for i =7 — 18. C;

represents the speed of sound of the fluid and evaluates to %

A Chapmann-Enskog expansion [40] can be used to demon-
strate that this framework leads to the hydrodynamic equations,
continuity eq. (1) and Navier-Stokes eqs. (2) in a low Mach num-
ber limit.

Local macroscopic properties of density and momentum can be
determined from moments of the f;(x,t) population. In the ab-
sence of forces these are given by

fieq(xs ) =wip(Xx,t) (1 +

px.O=) fix )= fx0, (5)
i i

and,

px Ou=Y" fix.0ci =) fx Dc;, (6)

i i

respectively. Other relevant physical properties of pressure,

p(x.t) = Cp(x.0), (7)

and viscosity,

n=pc§(r—%), (8)

arise from the Chapmann-Enskog expansion process.
2.3. Boundary conditions
We encounter two different types of boundary conditions (BCs)

within the LBM: a) the BCs at solid surfaces and b) the BCs at
the inlets - outlets of the simulation domain. The former refers
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to enforcing the no-slip boundary condition on the velocity field,
while the later on how to drive the fluid flow. Within the lattice
Boltzmann framework these aim to establish certain conditions at
a given boundary site by explicitly determining the values of the
unknown post-collisional distribution functions propagating from
unknown locations outside the geometry into the simulation do-
main after the streaming step, see eq. (3b).

2.3.1. No-slip boundary conditions

We enforce the no-slip boundary condition at solid surfaces
(blood vessels’ walls) by applying the mid-link bounce-back rule
proposed by Ladd and Verberg [41]. Populations streaming towards
solid nodes are reflected back towards the lattice nodes they came
from, resulting in recovering the wall location (zero velocity) ap-
proximately half-way between the fluid and solid node.

The above choice combined with the single relaxation time col-
lision model (BGK) can lead to viscosity dependent (relaxation
time 7) location of solid surfaces [42]. For simulations involving
blood flow within small-diameter blood vessels, e.g. arterioles and
venules, a two-relaxation (TRT) or multi-relaxation (MRT) time col-
lision model may be more suitable to ensure that blood flow is
correctly resolved. Although this is a known issue for porous me-
dia flow, e.g. permeability calculations, which are sensitive to the
exact location of solid surfaces [42], the sensitivity of blood flow
simulations with respect to this aspect may be worth investigating
as well. Furthermore, the TRT and MRT collision models can en-
hance the stability of LB simulations. For the purpose of this study,
however, as well as for blood flow in large-diameter blood vessels,
the BGK collision model suffices.

2.3.2. Inlet - outlet boundary conditions

This is probably one of the most challenging tasks when run-
ning blood flow simulations. While for regular geometries impos-
ing inlet-outlet BCs is simple, for the case of vascular systems this
information is difficult to obtain. Ideally, clinically measured flow
rates should be imposed, which can be obtained non-invasively
by using techniques such as Doppler Ultrasound or Magnetic Res-
onance Angiography [43]. However, this is not a straightforward
task. Moreover, another challenge of simulations at full-human
scale is the development of an efficient and accurate approach
to imposing BCs on multiple outlets. Lo et al. [44] recently im-
plemented a two-element Windkessel model in HemeLB_CPU to
control the flow rate ratios at the outlets.

Within HemeLB_GPU, the blood flow is driven by applying ei-
ther velocity or pressure BCs at the inlets and outlets, termed
iolets, of the domain. BCs can be set independently for the two
types of iolets encountered. Pressure BCs are imposed by assigning
a target pressure at the boundary fluid nodes, which for the LBM
is achieved through assigning the value of the local density (ghost
density). For velocity BCs, we follow Ladd’s method [45] to im-
pose the expected velocity profile (e.g. parabolic, Womersley). This
is based on a modification of the bounce-back scheme with a cor-
rection term (momentum exchange term) —2w;pu - ci/CSZ. A more
detailed description on the implementation of BCs within HemeLB
is provided by Nash et al. [46].

3. GPU code implementation

In this section we give an overview of the GPU code imple-
mentation. First we provide some general background information
on the LB algorithm and the HemeLB code. Then we describe the
steps taken to port the HemeLB code to GPU architecture.

3.1. General background

The LB algorithm proceeds in the following way:
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1. Initialise macroscopic quantities, density o and velocity u, re-
quired for the initialisation of the distribution functions f;
(i=0—18) to their equilibrium value fieq using eq. (4).

2. Collision step: evaluate the updated distribution functions
f{(x,t) according to eq. (3a).

3. Streaming step: the updated distribution functions f](x,t)
propagate to the neighbouring fluid site, x+ ¢c;At, see eq. (3b).

4. Apply BCs: solid-fluid BCs and Inlet/Outlet BCs.

5. Repeat steps 2-4 timeSteps-times. These steps represent the
core of the LBM algorithm.

The above scheme with the collision step preceding the stream-
ing step is referred to as the Push-scheme [47]. It would also be
possible to have the streaming step first, by gathering the distri-
bution functions from the neighbouring fluid sites to a given fluid
site and then perform the collision step. This is known as the Pull-
scheme [29,47]. Further discussion on the above two schemes will
follow in section 7.

The LBM is inherently amenable to parallelisation owing to its
local nature and thus presents itself as a candidate for extreme
parallelism on modern supercomputers. Exchange of data between
neighbouring MPI ranks requires only nearest neighbour informa-
tion and takes place during the streaming step, when the updated
distribution functions stream in and out of the domain assigned to
each MPI rank. The fluid sites of these shared edges are labelled as
domain-edge sites, while the ones not requiring any exchange of in-
formation with neighbouring MPI ranks are labelled as mid-domain
sites. Hence, a highly effective way of hiding the MPI commu-
nication overhead and enabling scaling of LBM algorithms up to
extreme scales is by performing the following at each LBM itera-
tion:

1. First, perform collision - streaming at domain-edge sites.

2. Then, issue the MPI exchange for the domain-edge sites.

3. Finally, perform collision - streaming at mid-domain sites,
while overlapping these computations with the MPI data ex-
change.

HemelB follows the same approach and registers the follow-
ing steps to be executed at each iteration (timeStep) through the
StepManager object

1. PreSend: Collision - streaming at domain-edge sites.

2. Send: Issue the MPI exchange of the updated distribution func-
tions involved at domain-edge sites

3. PreReceive: Collision - streaming at mid-domain sites.

4. Receive: Wait for the MPI exchange of the updated distribution
functions to complete.

5. PostReceive: Place the received distribution functions in the
appropriate streaming location.

6. Endlteration: Perform necessary calculations at the end of
the LB iteration for updating the property cache, containing
macrovariables of interest, e.g. density, velocity etc. Finally,
swap the distribution functions f° (pre-collision) and f"¥
(post-collision). Essentially, only placing f"" into f°¢ is re-
quired.

3.2. Porting the HemeLB code to GPU architecture

Here we describe the steps taken to port the single component
HemeLB_CPU code to GPU architecture. HemeLB_CPU is written in
C++. The GPU version of HemeLB has been developed using the
CUDA computing platform (CUDA C++) to run on NVIDIA’s GPUs.
We must note that, as we are moving into an era where there
may be more kinds of GPUs available (NVIDIA, AMD, Intel), we
would like to make the code eventually platform agnostic. To this
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direction, recent development efforts were carried out porting the
CUDA code to the HIP runtime API, making it able to run on AMD
GPUs as well. Here, however, we will restrict ourselves to the CUDA
version of the code.

Given the complex nature of the existing CPU version of
HemelB, our initial attempt for porting the HemeLB code on GPU
architectures focused on exporting the compute intensive parts
onto the GPU (device), without making significant changes to the
remaining structure of the code.

The steps taken involve the following:

1. Initialise the GPU.

2. Implement the GPU collision - streaming kernels.

3. Arrange the exchange of data between the device (GPU) and
the host (CPU), i.e. the memory copies from the device to host
(D2H) and from the host to device (H2D).

4. Arrange the CUDA streams for the various GPU operations
and the appropriate synchronisation points (cudaStreamSyn-
chronize).

3.2.1. Initialisation of the GPU

Initialising the GPU takes place at the beginning of the simu-
lation and involves allocating memory and copying the data that
will reside on the GPU for the duration of the simulation. More
specifically this involves:

o Allocate memory on the GPU global memory and perform a
H2D memory copy for the distribution functions (fo/d, frew)
and the streaming indices; the later refer to the GPU memory
locations that the post-collision populations will stream to. A
change of the data layout is performed for these data struc-
tures. More details on this are provided in section 3.2.3.

e Allocate memory (GPU global memory) and perform a H2D
memory copy for the following:

1. information for boundary links’ intersections (wall/iolet)
2. information for iolets:
(a) total number of iolets on local MPI rank
(b) fluid sites’ range associated with each unique iolet
(c) normal vector at each iolet
3. streaming indices for the received distribution functions
f€W at shared edges

o Allocate memory (GPU global memory) related to BCs at iolets:
1. for the case of Pressure BCs the ghost density for each iolet.
2. for the case of Velocity BCs the correction term for each

iolet fluid site.

e Copy to GPU constant memory the following:

1. discrete velocity directions ¢; of the LB model (D3Q19).

2. inverse velocity directions (related to the bounce-back
scheme).

3. weights w; for calculating f¢9.

4, relaxation time 7 and its inverse.

3.2.2. Collision - streaming GPU kernels

The compute intensive parts of the code that were exported
on the GPU involve mainly the collision and streaming steps of
the LB algorithm. These steps are performed together within the
GPU kernels. This significantly reduces the data traffic to/from the
GPU global memory, since there is only one read and one store
of LB populations at every time step. Distribution functions and
computations are in double precision. HemeLB distinguishes the
following 6 types of collision - streaming, depending on the type
of fluid sites and their corresponding streaming links: 1) Inner
domain: only fluid sites without any links to any type of bound-
aries (walls/iolets), 2) Walls: fluid sites with a link to a solid sur-
face, 3) Inlet, 4) Outlet, 5) Inlet with Walls and 6) Outlet with
Walls. Hence, GPU CUDA kernels were initially implemented to

Computer Physics Communications 282 (2023) 108548

account for each one for the above collision - streaming types.
We must note that we have eventually merged the first two types
of collision - streaming kernels, which provided a small gain in
performance. All collision - streaming kernels can be potentially
launched within the PreSend (domain-edge sites) and the PreReceive
(mid-domain sites) steps of the code.

HemelLB groups the fluid sites in a consecutive ascending order
depending on their collision - streaming type (indirect memory
addressing [25,30,31]), with the corresponding fluid sites’ range
passed as an argument to the appropriate CUDA kernel. Depend-
ing on the LB stencil (D3Q19), each fluid site is connected to a
set of neighbours. This connectivity information is computed at
the beginning of the simulation and stored in the geometry in-
put file (.gmy). When the CUDA kernels are launched, their threads
(bundled into warps) are more likely to execute the same code
branches, avoiding consequently any control divergence. Moreover,
these kernels reside on different CUDA streams, see Fig. 1; hence,
they can run concurrently and offer further acceleration of the
computations. This is in contrast to the HemeLB_CPU code where
the corresponding components execute in a serial manner.

We implemented the collision - streaming GPU CUDA kernels
with the following assumptions:

1. Lattice model: D3Q19.

2. Collision operator: Single relaxation time approximation, i.e.
BGK collision operator [39].

3. Wall boundary conditions: Mid-link bounce-back [41].

4. Inlet/Outlet boundary conditions: Any type of inlet and out-
let BCs supported by HemelB, i.e. pressure or velocity BCs, to
drive the blood flow.

Each CUDA kernel performs the collision and streaming step, as
well as applies the appropriate BCs when applicable, by determin-
ing the unknown populations f™" after the streaming step.

Each thread in the CUDA kernels performs the following:

1. Loads the f°€ distribution functions from the GPU global
memory into local memory.

2. Calculates the hydrodynamic macrovariables (o, u), using
egs. (5), (6).

3. Calculates the equilibrium f¢ values (eq. (4)).

4. Calculates the post-collision distribution functions locally
(eq. (3a)).

5. Performs the streaming step (eq. (3b)). If the thread encoun-
ters any boundary links during streaming (wall/iolet), apply
the appropriate BCs to determine the unknown populations
fnew.

6. Stores the updated values f"™" into the GPU global memory.

7. Stores the hydrodynamic macrovariables (p, u) into the GPU
global memory at a specified frequency, e.g. every 100 time-
steps, to decrease any unnecessary memory traffic to the GPU
memory.

Populations that stream out of the simulation domain at do-
main edges during the streaming step are appended at the end of
the f™W 1D array in totalSharedFs, see Figs. 2-3. The collision -
streaming CUDA kernels for these sites are launched first during
the step PreSend, as discussed in section 3.1. A CUDA synchronisa-
tion barrier (cudaStreamSynchronize) ensures that all GPU collision
- streaming kernels in PreSend have completed their task. A D2H
asynchronous memory copy (cudaMemcpyAsync) is then issued to
transfer the populations in totalSharedFs to the host and arrange
the MPI send to the appropriate neighbouring rank (step Send).
Once transfered on the receiving MPI rank, a H2D asynch. mem.
copy is issued and the data are placed in the totalSharedFs loca-
tion of the f° 1D array ((PostReceive step). Finally, a GPU kernel
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Fig. 1. HemeLB_GPU execution timeline: Focus of analysis zoom (3 timesteps) showing GPU CUDA kernels (green boxes) running concurrently in different CUDA streams for
MPI ranks 64 to 67. Each line corresponds to a different CUDA stream. Some ranks/GPUs (MPI ranks 65 & 66) have additional kernels for processing iolets. This is a possible

source of load imbalance. Here, ranks 64 & 67 have 2 kernels, compared to ranks 65 & 66 that have 6. Load imbalance leads to variations (At

in the starting time for the

execution of the GPU kernels for varying ranks. Results from profiling a simulation on Juwels Cluster (Julich Supercomputing Centre) with 32 nodes and 129 MPI processes
driving 128 Tesla V100 GPUs [48]. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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totalSharedFs

| £0], ..., fis[0] | ... |fi[nFluid nodes-1], ..., fis[nFluid nodes-1]| totalSharedFs]

Fig. 2. Array-of-Structures scheme (HemeLB_CPU version). Distribution functions f° (pre-collision) and f"" (post-collision) are arranged based on the fluid site ID in a 1D

array.

(GPU_StreamReceivedDistr) performs the appropriate re-allocation
of the received distribution functions, from the totalSharedFs in f°/
into the destination buffer f™v.

Once the above re-allocation is complete and all collision -
streaming GPU kernels in step PreReceive (mid-domain sites) have
also completed their task (use cudaStreamSynchronize), swapping of
the populations takes place in step Endliteration; this ends the LB
algorithm for the current time-step.

3.2.3. Optimisation strategies
The main optimisation strategies used during the GPU code de-
velopment were:

e Change of data layout. HemeLB stores the distribution func-
tions (4, f"eW) as an Array-of-Structures (AoS), where data is
arranged in a 1D array in system memory based on the fluid
site index, see Fig. 2. The GPU version stores these data fol-
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Fig. 3. Structure-of-Arrays scheme (HemeLB_GPU version). Distribution functions f°d (pre-collision) and f™" (post-collision) are arranged based on the discrete velocity

directions of the lattice model (D3Q19) in a 1D array.

lowing the Structure-of-Arrays (SoA) scheme; data is arranged
based on the LB discrete velocity directions, see Fig. 3. SoA
scheme is more suitable for the GPU architecture as demon-
strated by Tran et al. [29]. Finally the array appended at
the end of the 1D arrays, labelled as totalSharedFs, that cor-
responds to the buffer for placing and receiving the post-
collision distribution functions at shared edges remains the
same as in the CPU version.

o Change the sequence of steps registered in StepManager, com-
pared to HemeLB_CPU. HemeLB_GPU reorders the pattern of
MPI exchanges of data. Instead of ordering the steps as Pre-
Send — Send — PreReceive, the sequence is modified to Pre-
Send — PreReceive — Send. Effectively, all GPU CUDA collision
- streaming kernels (PreSend:domain-edge and PreReceive:mid-
domain) are launched first, with control returned to the host,
before issuing the MPI exchange of data. This allows a better
overlap of the computations and improves consequently the
code’s performance.

o Use of different CUDA streams for all GPU operations. This al-
lows overlapping the CUDA kernels’ execution, see Fig. 1, and
the asynchronous memory copies, Device to Host (D2H) and
Host to Device (H2D), see Fig. 4.

o Swap the distribution functions at the end of the LB itera-
tion. Exchange the pointers for the fundamental LB data ( f°!,
f"e%), instead of explicitly swapping the data.

3.3. Compiling - running a simulation

Compiling the code is a two-stage process. First, the user must
build the dependencies before compiling the source code. A de-
tailed description of the input file and how to run a simulation
is provided in the GitHub repository [49] and the official HemeLB
website [50].

4. Large scale performance comparison

HemeLB has been specifically optimized to allow excellent
strong scaling performance on the sparse and irregular geometries
that are characteristic of vascular domains. In our comparisons of
performance on CPU and GPU based architectures, we consider two
particular domains of different resolutions. The first is a discretiza-
tion of the full human venous tree consisting of approximately
1.6 x 10 lattice sites, whilst the second represents the circle of
Willis arterial structure found in the brain possessing 10.2 x 10°
sites. Whilst both of these domains are of significant magnitude,
we demonstrate that even these are not sufficient to adequately
occupy current petascale machines to their full extent. These do-
mains are illustrated in Fig. 5.

In this study, we are focused on the strong scaling performance
of HemeLB. Because of the fixed and irregular shape of vascular
geometries we are considering, it is difficult to accurately partition

the domain to ensure an even balance of work between proces-
sors necessary for a rigorous weak scaling analysis. Assessing and
comparing strong scaling performance between CPUs and GPUs is
not a straightforward task due to the inherent differences between
their execution. Adding to this are the differences in how HPC fa-
cilities have packaged resources onto a node of their machines. In
Table 1 we identify potential metrics for comparing the large-scale
performance of CPU and GPU codes both in terms of scale (x-axis)
and performance (y-axis) with their benefits and drawbacks.

A particular challenge in comparing the performance of GPU
and CPU codes is the determination of an equivalence between the
two architectures. By way of precedent, the Top500 [51] list of su-
percomputers gives a measure of total “cores” in a supercomputer.
For machines accelerated by GPUs, it appears that the GPU sub-
unit of a “streaming multiprocessor” (in NVIDIA nomenclature) is
deemed to be equivalent to a CPU core. By this measure, a NVIDIA
V100 GPU corresponds to 80 CPU cores, whilst an A100 GPU is
equivalent to 108.

Through association with a number of research projects,
HemeLB_CPU has been able to be executed on a range of HPC
machines and architectures including:

o Blue Waters (NCSA - 22,636 nodes, 16 CPU cores on each
node)

o ARCHER (EPCC - 4920 nodes, 24 CPU cores on each node)

e ARCHER2 (EPCC - 5848 nodes (Phase 1 = 1024 nodes), 128 CPU
cores on each node)

o SuperMUC-NG (LRZ - 6480 nodes, 48 CPU cores on each node)

while HemeLB_GPU has been able to be executed on the following:

e Piz-Daint (CSCS - 5704 nodes, 12 CPU cores and 1 P100 GPU
on each node),

e JUWELS-Cluster (JSC - 56 nodes, 40 CPU cores and 4 V100
GPUs on each node),

o JUWELS-Booster (JSC - 936 nodes, 48 CPU cores and 4 A100
GPUs on each node) and

e SUMMIT (ORNL - 4608 nodes, 42 CPU cores and 6 V100 GPUs
on each node).

This breadth of machines has enabled us to develop a broad
understanding of the HemeLB code and how it performs on a range
of architectures. In our following analysis we will restrict reporting
to cases where common test cases have been conducted.

4.1. HemeLB_CPU - strong scaling performance

As the capabilities of both HemeLB and supercomputers have
increased, the strong scaling performance of HemeLB has been
repeatedly demonstrated, from tens to hundreds of thousands of
compute cores. Here we highlight this improvement on HPC fa-
cilities of varying architecture and scale. On the SuperMUC-NG
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Fig. 4. Profiling the HemeLB_GPU code using NSight Systems. Focus of analysis zoom (1 timestep) showing GPU CUDA kernels (blue) in different streams, as well as the
asynchronous memory copies (D2H and H2D). The D2H memory copy sends the data to the host to be sent to neighbouring MPI ranks; once the MPI send is complete and
the updated distribution functions have been received on the host, the H2D mem. copy transfers these to the device to be placed in totalSharedFs. The MPI communications
and the asynchronous memory copies (D2H and H2D) overlap with the computations of the mid-domain sites.
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Fig. 5. lllustrations of the test domains used to test the large-scale performance of HemeLB's GPU and CPU versions: (a) The full human venous tree consisting of 1.6 x 10°
lattice sites. (b) The circle of Willis (cow), arteries at the inferior side of the brain, consisting of 10.2 x 10° lattice sites. (c) The arterial legs consisting of 66.4 x 10° sites.
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Table 1
Various potential metrics for assessing the strong scaling performance of CPU and GPU codes.
Metric Type Pros Cons
Cores Scale Simple measure of number of cores deployed Assumes equivalence between CPUs and GPUs; Reflects poorly on GPU codes; HPC
facilities have far fewer GPUs than CPUs
Threads Scale Gives strong indication of total number of Assumes a GPU thread and a CPU core are equivalent; Reflects poorly on CPU codes
parallel processes utilised by a job
Nodes Scale Simple measure of total nodes used by a job Resources available on a node varies widely between HPC facilities; GPUs may not be
available on all nodes; Job may not demand all resources of a node
Wall Time  Performance  Easiest measure to record Geometry dependent measure
Speed Up Performance  Straightforward measure to interpret Derived unit from wall time or MLUPS
performance
MLUPS Performance =~ More independent of geometry Measure that is most relevant to LBM codes

machine in particular, we had the opportunity to test the perfor-
mance of HemeLB on a new supercomputer that was then within
the top 10 of the Top500 list and represented one of the closest
estimates of performance on an exascale machine available. Inde-
pendently and in collaboration with the POP Centre of Excellence
[52], we were able to conduct a similar test regime on Blue Wa-
ters and SuperMUC-NG using the circle of Willis geometry - an
arterial structure typical of production jobs. The details of these
studies are more fully reported in [8,53,54]. In these studies, we
were able to run simulations at up to near-full or full-machine
scale on both machines (Blue Waters 288,000 cores, 80% of avail-
able cores; SuperMUC-NG 309,696 cores, 99.6% of available cores).
We report the performance of these in Fig. 6. In Fig. 6, we also
provide comparison to a similar test conducted on ARCHER with a
smaller circle of Willis test domain of 777 million lattice sites. The
improvement in performance through the use of a geometry that
can better occupy the compute capacity of a machine is clear. We
observed 75% strong scaling efficiency at 48,000 cores on ARCHER,
81% efficiency at 192,000 cores on Blue Waters and 75% efficiency
on SuperMUC-NG at 147,456 cores. On all machines, HemeLB con-
tinues to scale strongly at all higher core counts tested. We believe
that the tapering of performance at higher core counts can be at-
tributed to two key reasons: 1) the test geometry not being large
enough to fully occupy the compute cores at full machine scale;
and 2) the impact of under-performing machine hardware or soft-
ware components. These can impact the ability of machines to
run large models effectively and can cause them to be unable to
handle and display data generated from such simulations. Item
(1) draws attention to an important issue which is only encoun-
tered by applications that seek to run models which require the
full production partition in order to run: very often, the machines
themselves may have not been optimised to routinely handle jobs
that operate at this scale. This may mean that internode commu-
nication may take longer periods when large numbers of cores
are being deployed. This makes it more difficult for computation
to mask communication and good strong scaling performance to
be achieved. Regarding item (2), on SuperMUC-NG, working with
collaborators from POP CoE we identified several benchmark tests
that exhibited significantly reduced performance due to a single
faulty compute node. Even with such nodes excluded, the use of
these extremely large core counts exposes benchmark tests to va-
garies in performance that are frequently difficult and/or expensive
to quantify.

4.2. HemeLB_GPU - strong scaling performance

We have been able to test the performance of the GPU code
on Summit - the second fastest machine on the current Top500
list Top500 whose performance is accelerated by 27,648 NVIDIA
V100 GPUs. Fig. 7 reports the strong scaling performance of
HemeLB_GPU. The relative speed-up of simulations is evaluated
with regards to the smaller amount of GPUs/CPUs that can ac-
commodate the simulation domain being investigated in terms
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Fig. 6. Strong scaling performance of the CPU code on various generations of CPU
based machines. Ideal scaling is indicated with the dashed lines.

of available memory. This is dictated by the GPU global mem-
ory. Using the circle of Willis geometry (~ 10.2 x 10 sites, see
Fig. 5(b)) and comparing to a baseline measurement on 768 GPU
cores, Fig. 7(a) demonstrates 90% perfect scaling performance on
6,144 GPUs and continued strong scaling to 18,432 GPUs, which
is approximately 2/3 of Summit’s capacity. The strong scaling effi-
ciency drops to 72% at 12,288 GPUs and 60% at 18,432 GPUs. In an
extra test on Summit, we examined the large-scale performance
by increasing the simulation domain and examining the scaling
characteristics of a cylinder constructed of ~ 37.5 x 10 sites, la-
belled as ExaPipe geometry (baseline 3,072 GPUs). As shown in
Fig. 7(a), this improves the strong scaling performance and leads
to 74% strong scaling efficiency at 18,432 GPUs, due to the in-
creased computation to communication ratio. This makes evident
the improvement in performance through the use of a geometry
that can better occupy the compute capacity of the machine.
Investigating further the deviation from perfect strong scaling
(solid line in Fig. 7(a)), we examined the time per LB iteration,
as this is indicative as to whether computations can mask the
MPI communications. Results with the circle of Willis geometry
(~10.2 x 10° sites, Fig. 5(b)) reveal a drop below 75% strong scal-
ing when the time per iteration titgr ~3.8x1073 s and 12,288 MPI
tasks. With the ExaPipe geometry (~ 37.5 x 10° sites) this drop
takes place at ti'¢" ~ 8.7 x 107> s and 18,432 MPI tasks. Generally,
deviations from excellent strong scaling will start to emerge when
the computational time at mid-domain sites becomes comparable
in size and cannot mask either of the following: (i) the commu-
nication overhead, which typically increases with the number of
processes used; (ii) the variations in the starting time of each LB
iteration due to either a) load imbalance issues exposed at large
core counts, as the number of fluid sites per GPU decreases (at the
time-scale of 10~3 s for example from Fig. 1) or b) hardware is-
sues. The MPI latency on Summit, as reported in [55], is of the
order of 107 s to 10~ s; hence, the most probable cause of the
deviation from strong scaling is load imbalance. This was identified
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Fig. 7. Strong scaling performance of HemeLB: (a) Relative speed-up of HemeLB_GPU on Summit. The baseline measurement, against which the relative speed-up is evaluated,
corresponds to 768 CPUs/GPUs for the circle of Willis (coW) and 3,072 CPUs/GPUs for the ExaPipe geometry. (b) Comparison of strong scaling performance of HemeLB_CPU
and HemeLB_GPU codes using a common geometry (circle of Willis). The normalised walltime recorded by each architecture is plotted against the raw number of resources
(CPU/GPU cores) requested. A speed-up factor of approximately 85 is observed. Inset: Normalised walltime as a function of CPU equivalent hardware units (CPU cores and

SMs).

to account for the deviation from ideal strong scaling when profil-
ing a simulation with the legs’ arteries (see Fig. 5(c)) on Juwels
Cluster (JSC) with 32 nodes and 129 MPI processes driving 128
V100 GPUs [48]. This is demonstrated in Fig. 8, which reveals con-
siderable variations for the total kernels’ execution time for varying
MPI ranks/GPUs. Mid-range ranks are taking much longer, espe-
cially for collision-streaming at the domain-edge sites. Furthermore,
the most heavily overloaded ranks have increased execution times
due to processing of iolets at domain-edge sites. Here, we have
used a basic decomposition of all geometries tested, which how-
ever returns an unbalanced work-load between MPI ranks. Specific
load-balancing libraries like Zoltan [56] and ParMETIS [57] could
help in this direction. However, the extensive pre-processing when
using these libraries leads to substantially longer walltimes and
more memory, making these impractical to rely on.

To enable comparison of the HemeLB_CPU and HemeLB_GPU
codes we utilised the same circle of Willis geometry as on Blue
Waters and SuperMUC-NG. Fig. 7(b) provides a side-by-side com-
parison of the SuperMUC-NG and Summit results using an equiva-
lence metric of 1 CPU core to 1 GPU. Here we can observe that the
acceleration of the GPU code for an equivalent number of “cores”
leads to a speed-up factor of approximately 85. For both codes, the
tapering of results at the highest core counts is reflective of the
limitation of the size of the geometry at these scales, as discussed
above.

Due to the fundamental nature of the GPU architectures, a mea-
sure of cores is not necessarily the most relevant measure of paral-
lelism in such applications. In the inset of Fig. 7(b) we compare the
performance of the CPU and GPU codes using the equivalence sug-
gested by the Top500 list, where NVIDIA V100 GPUs are equivalent
to 80 CPU cores. Probably this arises from the fact that each Tesla
V100 features 80 streaming multiprocessors (SMs). Here, it can be
seen how the GPU code is able to continue the scalability charac-
teristics to a higher level of parallelism than is achieved with the
CPU codes. The total level of parallelism exhibited by the GPU code
can be estimated by taking into account the fact that the NVIDIA
V100 GPUs available on Summit each possess 5120 FP64 CUDA
cores (double precision) that execute tasks in parallel. As such, the
performance we report on Summit represents 90% efficient scal-
ing on over 31 million parallel tasks and continued strong scaling
behaviour up to over 94 million processes. This helps to support
our argument that the inherent parallelism of HemeLB is well po-
sitioned to be deployed on an exascale machine.

In conjunction with the scaling tests discussed above, we have
also generated some more normalised performance data for the
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Fig. 8. Total GPU kernels’ execution time for varying MPI ranks/GPUs from profil-
ing a simulation with the legs’ arteries (see Fig. 5(c)) on Juwels Cluster (JSC) with
32 nodes and 129 MPI processes driving 128 V100 GPUs [48]. Considerable varia-
tions are observed by MPI rank, with mid-range ranks taking much longer especially
for collision-streaming at the domain-edge sites (PreSend step). The GPU kernels
are labelled as follows: 1) k1: collision-streaming at Inner domain & Walls, 2) k2:
collision-streaming at iolets, 3) k3: collision-streaming at iolets with walls and 4)
k4: kernel for streaming the received distribution functions from neighbouring MPI
ranks. The numbering in front of the kernel type corresponds to the CUDA streams.
The most heavily overloaded ranks have increased computational times due to pro-
cessing iolets (kernels k2 & k3) in PreSend.

CPU and GPU versions of HemeLB on a wider variety of machines.
Fig. 9 reports the performance of simulations in Millions of Lattice
site Updates Per Second (MLUPS) on a per core and node basis.
MLUPS is defined as

nFluidSites x nTimeSteps
SimTime x 108

where nFluidSites, nTimeSteps and SimTime are the total number
of fluid sites in the simulation domain, number of time-steps and
total simulation time in seconds respectively. The evaluation of the
performance on a per core (MLUPSpc) and per node (MLUPSpn)
basis is based on the following definitions

MLUPS
MLUPSpc = ——

MLUPS =

(9)

MLUPS
and MLUPSpn = ———
nCores nNodes

where nCores, nNodes are the total number of CPU cores (MPI
ranks) and total compute nodes respectively. Here, we must note
that we used one MPI rank per GPU, although HemeLB_GPU can
also run using other configurations as well by having multiple MPI
ranks accessing the same GPU. Regarding the simulations reported

(10)
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Fig. 9. Performance of HemeLB reported in millions of lattice sites per second (MLUPS) on (a) a per core basis, MLUPSpc, and (b) per node basis MLUPSpn. Open symbols
correspond to results from CPU-only HPC machines (HemeLB_CPU), while the ones with filled symbols from HPC machines with NVIDIA GPUs (HemeLB_GPU). Simulations
were conducted using a range of domains: small circle of Willis - ARCHER; large circle of Willis - Blue Waters, SuperMUC-NG, Summit; Full human veins - ARCHER, ARCHER2,

Piz Daint.

in Fig. 7(a) on Summit, the baseline measurement of HemeLB_GPU
with: a) the circle of Willis geometry is ~ 300 MLUPSpc (a to-
tal of 2.302 x 10> MLUPS on 768 CPUs/GPUs) and b) the ExaPipe
geometry is ~ 316 MLUPSpc (a total of 9.703 x 10° MLUPS on
3072 CPUs/GPUs). For comparison reasons, the performance of
HemeLB_CPU on SuperMUC-NG with the circle of Willis is ~ 3.5
MLUPSpc.

4.2.1. HPC configurations - impact on code performance

The above is informative as we have access to a broad range
of high-end machines with different configurations of CPUs, GPUs,
memory and bandwidth. For all machines, the drop in performance
at higher node counts is due to the test domain not being suf-
ficiently large to occupy the resources at that scale, the point at
which this occurs varying between machines due to the different
memory availability on CPU cores and GPU cards. Here we can see
how the construction of a node can impact performance. For ex-
ample, Piz Daint, a machine with only a single NVIDIA P100 GPU
per node, delivers comparable performance to a single, CPU only,
node on SuperMUC-NG. By comparison, the nodes on Summit, con-
taining 6 NVIDIA V100s, deliver a performance improvement of a
factor of at least 10 on other reported machines - i.e. 1 Summit
node delivers the same performance as 10 SuperMUC-NG nodes.
This indicates that the largest data for Summit reported in Fig. 7
corresponds to over 30,000 SuperMUC-NG nodes - 5 times larger
than the actual SuperMUC-NG.

The comparison between the 2013-era ARCHER machine and
the current generation ARCHER2 provides another notable com-
parison. Here, with more than 5 times as many cores per node,
the new machine can only generate a node-based performance im-
provement of a factor of 2.9. This is due to hardware decisions
that were made during procurement that led to a net reduction
in memory bandwidth per core. Such decisions can have a nega-
tive impact on the relative performance of monolithic codes, espe-
cially those that are memory bound such as the lattice Boltzmann
method. However, the same decisions can also be advantageous for
other compute patterns that are less dependent on such hardware
choices. The original ARCHER machine possessed 2 x 12-core In-
tel Ivy Bridge E5-2697 v2 CPUs on each node whilst the newer
ARCHER2 has 2 x 64-core AMD Zen2 7742 CPUs per node. Whilst
the AMD CPUs do run at a lower frequency than the Intel cores,
this is not sufficient to fully explain the per-core difference in per-
formance between the two machines. On earlier generations of
Intel and AMD hardware, a similar difference in performance for
a lattice Boltzmann code was reported in [58].

The variation in performance on a per core and node basis re-
ported in Fig. 9 highlights the challenges posed when designing
HPC architectures. Choices such as the number of GPUs and CPUs
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ing both performance (MLUPS) and fluid sites using the equivalence suggested by
the Top500 list, which depends on the number of Streaming Multiprocessors (SMs)
a GPU consists of. coW, Veins and Arteries refer to the domains illustrated in Fig. 5.
One challenge of achieving effective exascale simulation will be to generate geome-
tries that are large enough to effectively occupy the hardware. A drop in compute
performance is observed at various values of sites per core on both CPU and GPU
architectures. The point at which this occurs varies between machines.

deployed on a node, memory availability and network will all have
an impact on code performance and will vary depending on dif-
ferent codes’ operational requirements. Equally, different compute
patterns will also pose competing demands on HPC performance.

5. Challenges at the emerging exascale

Based on our current investigations, the compute and thus scal-
ing performance of HemeLB is dependent on the number of lattice



I. Zacharoudiou, J.W.S. McCullough and P.V. Coveney
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Minimum memory demands for large-scale geometry generation in HemeLB on a CPU only ma-

chine, all figures in TB.

Cores  Classification 10° sites/core  5x10° sites/core 108 sites/core
10° Current HPC - medium scale 12.72 63.6 1272

5x10° Current HPC - largest scale 63.6 318 636

10° Next-Generation HPC 1272 636 1272

107 Exascale HPC 1272 6360 12720

sites per core. This is proportional to the computational time per
LB iteration; in the case that this is sufficient to hide the MPI com-
munication, then the strong scaling behaviour can be maintained.
This is demonstrated in Fig. 10, where we plot the simulation
speed against the number of sites per core for the CPU code. A
significant performance drop is seen below ~ 10 sites/core for
HemeLB_CPU and ~ 10° sites/core for HemeLB_GPU, demonstrat-
ing this to be a limit at which computation is outweighed by
communication between nodes.

We believe that a full human vascular model may require at
least 50 x 10° lattice sites to resolve the model at high resolu-
tion. Such a geometry, being five times larger than that used in the
POP evaluation [53], will enable many of the performance concerns
seen at scale on SuperMUC-NG to be addressed. The challenges as-
sociated with a) creating, b) storing and c) simulating a geometry
of this scale are highly non-trivial. Regardless of the processing
method chosen, storage requirements can be on the order of tens
of terabytes for interim files (see Table 2 for the minimum memory
demands for large-scale geometry generation in HemeLB on a CPU
only machine). Furthermore, processing time may exceed 50 hours;
both (storage requirements and processing times) are factors that
may exceed allocation fair-use limitations imposed by HPC facili-
ties. For future exascale machines with some 10 million cores, the
potential requirement of 102 lattice sites to achieve good scaling
will further challenge the mesh generation of HemeLB (and indeed
any code) and the machine’s storage infrastructure. The HemeLB
developers remain in collaboration with operators of SuperMUC-
NG to develop solutions for addressing these concerns.

Whilst the figures presented here are particular to our deploy-
ments of HemeLB, they remain illustrative of the challenges of
migrating monolithic codes to exascale HPC facilities. In addition
to the storage challenges related to generating geometries of suffi-
cient scale, the operational demands of loading such a domain for
simulation, writing and storing output will put further demands
on the resources of an exascale machine. Furthermore, the time
required for pre- and post-processing operations is an additional
challenge for operating efficiently at scale.

The scaling data presented here focuses on the simulation
phase of the code. Demands of data writing and post-processing
in particular may be harder to predict in general, as the output re-
quirements can be specific to a particular problem. The tools used
for pre- and post-processing may not have received the same de-
gree of performance optimization as the simulation kernels; this
highlights the need to consider the whole simulation workflow
when evaluating the performance of a code. The use of work-
flow management tools such as RADICAL CyberTools [59] can help
to manage multiple processes concurrently by reducing resource
wastage; this is particularly true for ensemble type simulation
studies. For the post-processing of HemeLB data an ongoing col-
laboration with the LRZ Centre for Virtual Reality and Visualisation
and Intel has developed a workflow based on Intel OSPRay Stu-
dio to enable rapid visualisation of the very large and complex
datasets that we can routinely generate [60]. Running this on HPC
systems as part of a computational workflow enables an immer-
sive rendering of vascular data to be obtained. Future work in this
direction envisions the development of a 3D virtual reality ex-
perience of simulation data and the capacity for computational
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Fig. 11. Example visualisation of a velocity field within the circle of Willis do-
main using the workflow developed in a collaboration with LRZ and Intel. This
demonstrates how high performance computers can be deployed to efficiently ren-
der images of the very large data sets created by HemeLB with human-scale data.
As the data structures output by the CPU and GPU versions of the code is the same
this tool can be used with both.

steering of a running simulation. As the output data structures
generated by the CPU and GPU codes are the same, this tool is
compatible with both versions of the code. An example of the re-
sults that can be achieved with this workflow is demonstrated for
the circle of Willis case study in Fig. 11.

The ability for a given application to achieve optimum perfor-
mance on a particular machine will require an ongoing co-design
effort between both code developers, HPC operators and hardware
experts. As the specific choice of hardware and its deployment can
have significant impacts on the performance of a code, it is in-
cumbent upon operators to ensure that the choices that they make
during procurement bring the greatest benefit to the widest cross-
section of their users of all application types. There is an equal
onus on code developers to be looking forward to optimisations
and performance gains that can be obtained on a given piece of
hardware such as through compiler options as new options be-
come available, or through an update of the code itself. These
demands must also be balanced against the need to generate sci-
entific knowledge from a code, where the ability to scale efficiently
to large resource counts may not be the most decisive criterion.

6. Blood flow simulations with the HemeLB_GPU code

Here we provide a simple example to demonstrate the
HemeLB_GPU code’s capacity of running blood flow simulations
by examining flow through a simple cylindrical pipe. Such a do-
main provides a canonical representation of the majority of blood
vessels that we study with HemeLB and allows for a straightfor-
ward comparison between output generated by the CPU and GPU
implementations.

The geometry input file format of the GPU version of the code
is identical to that used for the CPU version. This requires voxeli-
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Fig. 12. Comparison of HemeLB_CPU and HemeLB_GPU codes. Simulation results using a pipe domain with velocity BCs imposed at the inlet and fixed constant pressure at
the outlet. (a) The maximum velocity profile imposed at the inlet, corresponding to a heart beat profile of 60 beats per minute. (b) Comparison of the volumetric flow rates.
(c) Comparison of maximum velocity and pressure at the inlet. (d) Comparison of maximum velocity and pressure at the outlet.

sation of a .stl file, representing the domain, to a .gmy file format,
which stores the relationships between each site on the lattice
and its neighbouring directions (indirect addressing). A suitable .stl
file will represent the walls of the simulation domain, as well as
the iolets by 2D planar openings, with their corresponding nor-
mal vectors oriented inwards towards the fluid. This conversion
is undertaken using a set of scripts available in the open-source
HemePure_Tools repository [61] and is built off features from the
open-source Palabos code [11].

The simulation reported in Fig. 12 is driven by a heartbeat ve-
locity profile of 60 beats per minute at the inlet (see Fig. 12(a)).
This is implemented following Ladd [45]. The profile shown in-
dicates the maximum velocity within the inlet; this is scaled by
a weighting factor at each individual inlet site. In this case a
parabolic profile was used to determine this weighting value and
varied from 1.0 at the centre to 0.0 at the walls. Our simulation
domain possessed a radius of 1 mm and a length of 10 mm and
was discretized with a lattice grid spacing of dx = 0.1 mm. The
simulation was run for 100,000 timesteps, with a timestep of dt =
2.5 x 10> sec; the simulation had a relaxation time of 7 = 0.53.
A fixed constant pressure, implemented using the Nash method
[46], is imposed at the outlet boundary. We compare the sim-
ulation results produced by HemeLB_CPU and HemeLB_GPU. The
output format of both implementations is returned in an identi-
cal compressed format. This can be converted to a human readable
format using the open-source hemeXtract tool [62]. Fig. 12(b)-(d)
demonstrate that the output obtained from the two versions of
the code is identical.
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7. Future work

We outlined here a first implementation of a GPU acceler-
ated version of HemeLB using CUDA C++. Results demonstrate that
the code continues to exhibit excellent strong scaling performance
up to thousands of GPUs and a decent speed up compared to
HemeLB_CPU. This is an excellent outcome; however, code de-
velopment and performance optimisation is an ongoing process,
considering that single phase LB codes have demonstrated an even
further gain in performance in terms of MLUPS per core.

Our initial efforts focused on exporting the collision-streaming
steps of HemeLB on the GPU, without making significant changes
to the rest of the code. Furthermore, trying to take advantage of
how GPUs read from global memory, we changed the data lay-
out for the distribution functions, f° and f"W, from the AoS
scheme to SoA. This allows for contiguous memory access within
a warp during reading of the populations at the beginning of the
collision-streaming GPU kernels. The same though does not apply
during writing of the populations for the streaming step. The cost
of this uncoalesced memory access can be reduced by consider-
ing a more appropriate data storage scheme. Herschlag et al. [30],
for example, found strong evidence that semi-direct addressing is
superior for arterial and porous media geometries using LB simu-
lations, with a performance boost when implementing a Collected
Structure of Arrays (CSoA) [63-65] data layout scheme. CSoA holds
smaller sub-collections of the distribution functions with a stride
length s and can help achieve more aligned writes on the GPU dur-
ing the streaming step. This data layout significantly outperformed
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the SoA scheme, almost by a factor of two, when tested on the
Summit supercomputer (ORNL - V100 GPUs) [30]. CSoA reduces
to the AoS (SoA) scheme when choosing a stride length of s =1
(number of the fluid sites).

Future work may also focus on various other issues, including
the following:

1. Optimise the GPU kernels’ performance. Tools and metrics pro-
vided by NVIDIA Nsight Compute [66] and Nsight Systems [67]
can help to this end. Recent optimisations at the main GPU
collision-streaming kernel level (Inner domain & Walls), through
our participation in the UK National GPU Hackathon 2022
event, led to a performance gain of ~ 50% when tested on
NVIDIA A100 GPUs on Baskerville (at the University of Birm-
ingham). The optimisations applied involved: a) loop unrolling
(#pragma unroll 19), b) merging of loops and c) surpris-
ingly, increasing the maximum number of registers per thread
(compiling with the option -maxrregcount 200). Gener-
ally, the available registers per streaming multiprocessor (SM)
impose a restriction on the number of active warps on the
SM and consequently may impact the GPU occupancy, lead-
ing to performance degradation. Here, however, despite de-
creasing the GPU occupancy by increasing the registers per
thread (87 up from 40) led to a performance boost as this
enabled access of the threads to local memory, decreased
the stalled warps’ cycles and reduced the memory traffic to
the GPU global memory, which is much slower. Results from
profiling the kernel using NVIDIA Nsight Compute [66] are
shown in Fig. 13. The enhancements in kernel performance
are evident, with an increase in the Streaming Multiproces-
sor (SM) compute throughput and a decrease in the Memory
throughput. The roofline analysis, shown in Fig. 13(b), reveals
an increase in the double precision arithmetic intensity. Fur-
ther work is currently underway to optimise all the GPU ker-
nels.

2. Convert from the Push to the Pull-scheme [29,47]. This refers
to modifying the sequence of the streaming and collision
steps of the LB algorithm. The Push-scheme, currently imple-
mented, refers to the situation when the collision precedes
the streaming step, while the reversed situation is known
as the Pull-scheme. The fundamental difference of the two
schemes lies with the ordering of uncoalesced memory ac-
cesses during reading from or writing to the GPU global
memory. It was shown that the Pull scheme performs bet-
ter than the Push-scheme, due to the cost of uncoalesced
memory accesses during reading from the GPU device mem-
ory (Pull-scheme) being lower than during writing (Push-
scheme) [29,30,47,68,69]. For example, Herschlag et al. [30]
report speed ratios between pushing and pulling over a range
of kernels and GPUs, with a ~25 to 35% speed up for indi-
rect addressing and SoA on the P100 and V100 GPUs respec-
tively.

3. Improve boundary conditions at iolets. Currently HemeLB_GPU
supports driving the fluid flow by using either pressure or ve-
locity boundary conditions, which can vary as a function of
time. More physiologically correct boundary conditions should
be applied though, when running patient- specific flow sim-
ulations, especially for outlet BCs to account for downstream
resistance [32,70,71]. However, these resistance models require
feedback from experiments and iterative tuning at each outlet,
so that eventually the simulated and in vivo volumetric flow
rates can match.

4, Implement elastic walls to better represent realistic vas-
cular geometries, following our recent implementation in
HemeLB_CPU, which most importantly demonstrated that
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this is feasible without a loss of computational performance
[72].

5. Add the option two-relaxation (TRT) and multi-relaxation
(MRT) collision operators.

As exascale HPC becomes available, these improvements, in
conjunction with the capability described in this paper, will con-
tinue to ensure that HemeLB is able to take full advantage of these
machines for deployment in human-scale blood flow simulations.
In an effort to reach this goal for use in the field of personalised
medicine, we have developed a self-coupled version of HemeLB
that allows simultaneous study of arterial and venous domains [8]
and provided an illustration of how it can be used in problems of
clinical interest [73]. The enhanced performance capabilities of the
GPU code will enable these CPU implementations to be conducted
more quickly whilst retaining HemeLB’s known strong scaling char-
acteristics.

8. Conclusions

In this paper we have outlined a version of HemeLB capable
of execution on NVIDIA GPUs that delivers excellent strong scaling
performance to tens of thousands of GPUs. This has been built off a
CPU-only version of HemeLB that has demonstrated similar strong
scaling performance to the full production partition of the German
supercomputer SuperMUC-NG. We have examined the new code’s
performance on a number of difference HPC platforms that repre-
sent a broad spectrum of hardware manufacturers and deployment
frameworks. We illustrate that the performance of a code can be
highly dependent on these factors with newer configurations not
necessarily yielding better performance.

As the arrival of exascale machines moves closer, we will con-
tinue to develop all versions of HemeLB to aim for best perfor-
mance on the widest range of machines. For example, the CPU
code will look to incorporate the latest optimizations for code
compilation and performance. Similarly we will continue to opti-
mize the GPU port and aim to convert from our current CUDA-
based implementation to one that allows deployment on both
NVIDIA and AMD GPUs. This second objective will allow us to run
HemeLB on a wider range of GPU accelerated HPC. As new features
and libraries become available, we anticipate that further optimiza-
tions can be made in the GPU code to further reduce communica-
tion time at scale and further improve the scaling characteristics
of our tool.

The results that we have presented in this paper highlight the
role that all stakeholders have in determining the specifications of
future HPC facilities. This can be regarded as a co-design exercise
that will be beneficial to both code developers and HPC opera-
tors alike. Achieving a balance between the hardware demands of
different compute patterns will be critical to generating the best
outcomes for a wide range of scientific applications. Making future
users of a new HPC facility aware of the hardware design as early
as possible will let code developers adapt to any changes that may
be necessary.
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