587 research outputs found

    Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276

    Get PDF
    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid Ļ‰6 concentrations reaching 2.54 and 0.80 g/L, respectively

    LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya

    Get PDF
    Accuracy assessment, also referred to as validation, is a key process in the workflow of developing a land cover map. To make this process open and transparent, we have developed a new online tool called LACO-Wiki, which encapsulates this process into a set of four simple steps including uploading a land cover map, creating a sample from the map, interpreting the sample with very high resolution satellite imagery and generating a report with accuracy measures. The aim of this paper is to present the main features of this new tool followed by an example of how it can be used for accuracy assessment of a land cover map. For the purpose of illustration, we have chosen GlobeLand30 for Kenya. Two different samples were interpreted by three individuals: one sample was provided by the GlobeLand30 team as part of their international efforts in validating GlobeLand30 with GEO (Group on Earth Observation) member states while a second sample was generated using LACO-Wiki. Using satellite imagery from Google Maps, Bing and Google Earth, the results show overall accuracies between 53% to 61%, which is lower than the global accuracy assessment of GlobeLand30 but may be reasonable given the complex landscapes found in Kenya. Statistical models were then fit to the data to determine what factors affect the agreement between the three interpreters such as the land cover class, the presence of very high resolution satellite imagery and the age of the image in relation to the baseline year for GlobeLand30 (2010). The results showed that all factors had a significant effect on the agreement

    Going beyond carbon: An "Earth system impact" score to better capture corporate and investment impacts on the earth system

    Get PDF
    Corporations are responsible for a significant portion of observed impacts on the Earth system, including green-house gas (GHG) emissions, but also water extraction, landuse change and other pressures on nature. These nature-related impacts are essential to consider and capture because they have local impacts on a range of ecosystem functions on which companies and economies depend, but they also fundamentally affect our ability to mitigate and adapt to a changing climate. Furthermore, climate, land and water interact and affect each other in various ways, such that climate change can be exacerbated by degraded ecosystems, which in turn are dependent on water. This paper tests a novel metric developed to capture corporate Earth system impact (ESI) beyond merely direct GHG emissions and explores how such a tool could be used to improve assessments of corporate environmental impacts and support decisions on where to direct public and private investments. We use the mining sector as a test case to illustrate the applicability of the ESI score and examine the impact of the the five largest (by market cap) mining companies in the precious metal mining sector and the top five in the non-precious metal mining sector. We find that many of the mining assets have non-negligible impacts on land and water, and we show that the ESI metric identifies a different set of asset for targeted action than conventional carbon intensity scores would do

    An update on global mining land use

    Get PDF
    The growing demand for minerals has pushed mining activities into new areas increasingly affecting biodiversity-rich natural biomes. Mapping the land use of the global mining sector is, therefore, a prerequisite for quantifying, understanding and mitigating adverse impacts caused by mineral extraction. This paper updates our previous work mapping mining sites worldwide. Using visual interpretation of Sentinel-2 images for 2019, we inspected more than 34,000 mining locations across the globe. The result is a global-scale dataset containing 44,929 polygon features covering 101,583 km2 of large-scale as well as artisanal and small-scale mining. The increase in coverage is substantial compared to the first version of the dataset, which included 21,060 polygons extending over 57,277 km2. The polygons cover open cuts, tailings dams, waste rock dumps, water ponds, processing plants, and other ground features related to the mining activities. The dataset is available for download from https://doi.org/10.1594/PANGAEA.942325 and visualisation at www.fineprint.global/viewer
    • ā€¦
    corecore