14 research outputs found

    External validation of the RISC, RISC-Malawi, and PERCH clinical prediction rules to identify risk of death in children hospitalized with pneumonia

    Get PDF
    From Crossref journal articles via Jisc Publications RouterBackground Existing scores to identify children at risk of hospitalized pneumonia-related mortality lack broad external validation. Our objective was to externally validate three such risk scores. Methods We applied the Respiratory Index of Severity in Children (RISC) for HIV-negative children, the RISC-Malawi, and the Pneumonia Etiology Research for Child Health (PERCH) scores to hospitalized children in the Pneumonia REsearch Partnerships to Assess WHO REcommendations (PREPARE) data set. The PREPARE data set includes pooled data from 41 studies on pediatric pneumonia from across the world. We calculated test characteristics and the area under the curve (AUC) for each of these clinical prediction rules. Results The RISC score for HIV-negative children was applied to 3574 children 0-24 months and demonstrated poor discriminatory ability (AUC = 0.66, 95% confidence interval (CI) = 0.58-0.73) in the identification of children at risk of hospitalized pneumonia-related mortality. The RISC-Malawi score had fair discriminatory value (AUC = 0.75, 95% CI = 0.74-0.77) among 17 864 children 2-59 months. The PERCH score was applied to 732 children 1-59 months and also demonstrated poor discriminatory value (AUC = 0.55, 95% CI = 0.37-0.73). Conclusions In a large external application of the RISC, RISC-Malawi, and PERCH scores, a substantial number of children were misclassified for their risk of hospitalized pneumonia-related mortality. Although pneumonia risk scores have performed well among the cohorts in which they were derived, their performance diminished when externally applied. A generalizable risk assessment tool with higher sensitivity and specificity to identify children at risk of hospitalized pneumonia-related mortality may be needed. Such a generalizable risk assessment tool would need context-specific validation prior to implementation in that setting.11pubpub

    Derivation and validation of a novel risk assessment tool to identify children aged 2-59 months at risk of hospitalised pneumonia-related mortality in 20 countries

    Get PDF
    INTRODUCTION: Existing risk assessment tools to identify children at risk of hospitalised pneumonia-related mortality have shown suboptimal discriminatory value during external validation. Our objective was to derive and validate a novel risk assessment tool to identify children aged 2-59 months at risk of hospitalised pneumonia-related mortality across various settings. METHODS: We used primary, baseline, patient-level data from 11 studies, including children evaluated for pneumonia in 20 low-income and middle-income countries. Patients with complete data were included in a logistic regression model to assess the association of candidate variables with the outcome hospitalised pneumonia-related mortality. Adjusted log coefficients were calculated for each candidate variable and assigned weighted points to derive the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) risk assessment tool. We used bootstrapped selection with 200 repetitions to internally validate the PREPARE risk assessment tool. RESULTS: A total of 27 388 children were included in the analysis (mean age 14.0 months, pneumonia-related case fatality ratio 3.1%). The PREPARE risk assessment tool included patient age, sex, weight-for-age z-score, body temperature, respiratory rate, unconsciousness or decreased level of consciousness, convulsions, cyanosis and hypoxaemia at baseline. The PREPARE risk assessment tool had good discriminatory value when internally validated (area under the curve 0.83, 95% CI 0.81 to 0.84). CONCLUSIONS: The PREPARE risk assessment tool had good discriminatory ability for identifying children at risk of hospitalised pneumonia-related mortality in a large, geographically diverse dataset. After external validation, this tool may be implemented in various settings to identify children at risk of hospitalised pneumonia-related mortality

    Assembling a global database of child pneumonia studies to inform WHO pneumonia management algorithm: methodology and applications

    Get PDF
    BACKGROUND: The existing World Health Organization (WHO) pneumonia case management guidelines rely on clinical symptoms and signs for identifying, classifying, and treating pneumonia in children up to 5 years old. We aimed to collate an individual patient-level data set from large, high-quality pre-existing studies on pneumonia in children to identify a set of signs and symptoms with greater validity in the diagnosis, prognosis, and possible treatment of childhood pneumonia for the improvement of current pneumonia case management guidelines. METHODS: Using data from a published systematic review and expert knowledge, we identified studies meeting our eligibility criteria and invited investigators to share individual-level patient data. We collected data on demographic information, general medical history, and current illness episode, including history, clinical presentation, chest radiograph findings when available, treatment, and outcome. Data were gathered separately from hospital-based and community-based cases. We performed a narrative synthesis to describe the final data set. RESULTS: Forty-one separate data sets were included in the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) database, 26 of which were hospital-based and 15 were community-based. The PREPARE database includes 285 839 children with pneumonia (244 323 in the hospital and 41 516 in the community), with detailed descriptions of clinical presentation, clinical progression, and outcome. Of 9185 pneumonia-related deaths, 6836 (74%) occurred in children <1 year of age and 1317 (14%) in children aged 1-2 years. Of the 285 839 episodes, 280 998 occurred in children 0-59 months old, of which 129 584 (46%) were 2-11 months of age and 152 730 (54%) were males. CONCLUSIONS: This data set could identify an improved specific, sensitive set of criteria for diagnosing clinical pneumonia and help identify sick children in need of referral to a higher level of care or a change of therapy. Field studies could be designed based on insights from PREPARE analyses to validate a potential revised pneumonia algorithm. The PREPARE methodology can also act as a model for disease database assembly

    In-hospital mortality risk stratification in children aged under 5 years with pneumonia with or without pulse oximetry: A secondary analysis of the Pneumonia REsearch Partnership to Assess WHO REcommendations (PREPARE) dataset

    Get PDF
    Objectives We determined the pulse oximetry benefit in pediatric pneumonia mortality risk stratification and chest-indrawing pneumonia in-hospital mortality risk factors. Methods We report the characteristics and in-hospital pneumonia-related mortality of children aged 2-59 months who were included in the Pneumonia Research Partnership to Assess WHO Recommendations dataset. We developed multivariable logistic regression models of chest-indrawing pneumonia to identify mortality risk factors. Results Among 285,839 children, 164,244 (57.5%) from hospital-based studies were included. Pneumonia case fatality risk (CFR) without pulse oximetry measurement was higher than with measurement (5.8%, 95% confidence interval [CI] 5.6-5.9% vs 2.1%, 95% CI 1.9-2.4%). One in five children with chest-indrawing pneumonia was hypoxemic (19.7%, 95% CI 19.0-20.4%), and the hypoxemic CFR was 10.3% (95% CI 9.1-11.5%). Other mortality risk factors were younger age (either 2-5 months [adjusted odds ratio (aOR) 9.94, 95% CI 6.67-14.84] or 6-11 months [aOR 2.67, 95% CI 1.71-4.16]), moderate malnutrition (aOR 2.41, 95% CI 1.87-3.09), and female sex (aOR 1.82, 95% CI 1.43-2.32). Conclusion Children with a pulse oximetry measurement had a lower CFR. Many children hospitalized with chest-indrawing pneumonia were hypoxemic and one in 10 died. Young age and moderate malnutrition were risk factors for in-hospital chest-indrawing pneumonia-related mortality. Pulse oximetry should be integrated in pneumonia hospital care for children under 5 years

    Assembling a global database of child pneumonia studies to inform WHO pneumonia management algorithm: Methodology and applications

    Get PDF
    Background The existing World Health Organization (WHO) pneumonia case management guidelines rely on clinical symptoms and signs for identifying, classifying, and treating pneumonia in children up to 5 years old. We aimed to collate an individual patient-level data set from large, high-quality pre-existing studies on pneumonia in children to identify a set of signs and symptoms with greater validity in the diagnosis, prognosis, and possible treatment of childhood pneumonia for the improvement of current pneumonia case management guidelines. Methods Using data from a published systematic review and expert knowledge, we identified studies meeting our eligibility criteria and invited investigators to share individual-level patient data. We collected data on demographic information, general medical history, and current illness episode, including history, clinical presentation, chest radiograph findings when available, treatment, and outcome. Data were gathered separately from hospital-based and community-based cases. We performed a narrative synthesis to describe the final data set. Results Forty-one separate data sets were included in the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) database, 26 of which were hospital-based and 15 were community-based. The PREPARE database includes 285 839 children with pneumonia (244 323 in the hospital and 41 516 in the community), with detailed descriptions of clinical presentation, clinical progression, and outcome. Of 9185 pneumonia-related deaths, 6836 (74%) occurred in children <1 year of age and 1317 (14%) in children aged 1-2 years. Of the 285 839 episodes, 280 998 occurred in children 0-59 months old, of which 129 584 (46%) were 2-11 months of age and 152 730 (54%) were males. Conclusions This data set could identify an improved specific, sensitive set of criteria for diagnosing clinical pneumonia and help identify sick children in need of referral to a higher level of care or a change of therapy. Field studies could be designed based on insights from PREPARE analyses to validate a potential revised pneumonia algorithm. The PREPARE methodology can also act as a model for disease database assembly

    Influence of perioperative oxygen fraction on pulmonary function after abdominal surgery: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high perioperative inspiratory oxygen fraction (FiO<sub>2</sub>) may reduce the frequency of surgical site infection. Perioperative atelectasis is caused by absorption, compression and reduced function of surfactant. It is well accepted, that ventilation with 100% oxygen for only a few minutes is associated with significant formation of atelectasis. However, it is still not clear if a longer period of 80% oxygen results in more atelectasis compared to a low FiO<sub>2</sub>.</p> <p>Our aim was to assess if a high FiO<sub>2</sub> is associated with impaired oxygenation and decreased pulmonary functional residual capacity (FRC).</p> <p>Methods</p> <p>Thirty-five patients scheduled for laparotomy for ovarian cancer were randomized to receive either 30% oxygen (n = 15) or 80% oxygen (n = 20) during and for 2 h after surgery. The oxygenation index (PaO<sub>2</sub>/FiO<sub>2</sub>) was measured every 30 min during anesthesia and 90 min after extubation. FRC was measured the day before surgery and 2 h after extubation by a rebreathing method using the inert gas SF<sub>6</sub>.</p> <p>Results</p> <p>Five min after intubation, the median PaO<sub>2</sub>/FiO<sub>2</sub> was 69 kPa [53-71] in the 30%-group vs. 60 kPa [47-69] in the 80%-group (<it>P</it> = 0.25). At the end of anesthesia, the PaO<sub>2</sub>/FiO<sub>2</sub> was 58 kPa [40-70] vs. 57 kPa [46-67] in the 30%- and 80%-group, respectively (<it>P</it> = 0.10). The median FRC was 1993 mL [1610-2240] vs. 1875 mL [1545-2048] at baseline and 1615 mL [1375-2318] vs. 1633 mL [1343-1948] postoperatively in the 30%- and 80%-group, respectively (<it>P</it> = 0.70).</p> <p>Conclusion</p> <p>We found no significant difference in oxygenation index or functional residual capacity between patients given 80% and 30% oxygen for a period of approximately 5 hours.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00637936.</p
    corecore