1,240 research outputs found
Electronic structure and magnetism in the frustrated antiferromagnet LiCrO2
LiCrO2 is a 2D triangular antiferromagnet, isostructural with the common
battery material LiCoO2 and a well-known Jahn-Teller antiferromagnet NaNiO2. As
opposed to the latter, LiCrO2 exibits antiferromagnetic exchange in Cr planes,
which has been ascribed to direct Cr-Cr d-d overlap. Using LDA and LDA+U first
principles calculations I confirm this conjecture and show that (a) direct d-d
overlap is indeed enhanced compared to isostructural Ni and Cr compounds, (b)
p-d charge transfer gap is also enhanced, thus suppressing the ferromagnetic
superexchange, (c) the calculated magnetic Hamiltonian maps well onto the
nearest neighbors Heisenberg exchange model and (d) interplanar inteaction is
antiferromagnetic.Comment: 5 pages, 4 figure
Interpreting university sport policy in England: seeking a purpose in turbulent times?
Given the fundamental change in political landscape of current higher education in England, it is timely to (re)consider the purpose of university sport and its fit with national sports policy. This research investigates the purpose of university sport; how university sport fits with national sport strategies, if at all; and whether universities and sport policy are capitalising on Higher Education (HE) sport. An interpretivistic public policy analysis was carried out using eight semi-structured interviews with senior leaders of sport within universities in one region of the north of England. In addition, documentary analysis was examined. Outcomes illustrate the changed landscape for university sport in England with the key purpose of sport focusing on wider student experience; to engage students in sport and contribute to enhancing student recruitment, retention, satisfaction, mental health and graduate employability. However, there were mixed views as to whether senior university leaders were fully aware of the extent of the role of sport. Strategic drivers were more internal than external although universities recognised the value of working in a symbiotic relationship with internal and external stakeholders. Recommendations are offered for university leaders and sport policy makers on how to better capitalise on sport in England and beyond
Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering
We demonstrate, for the first time, successful S-matrix to potential
inversion for spin one projectiles with non-diagonal yielding a
interaction. The method is a generalization of the
iterative-perturbative, IP, method. We present a test case indicating the
degree of uniqueness of the potential. The method is adapted, using established
procedures, into direct observable to potential inversion, fitting ,
, , and for d + alpha scattering over
a range of energies near 10 MeV. The interaction which we find is
very different from that proposed elsewhere, both real and imaginary parts
being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure
Multi-scale strain-stiffening of semiflexible bundle networks
Bundles of polymer filaments are responsible for the rich and unique
mechanical behaviors of many biomaterials, including cells and extracellular
matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial
for normal blood clotting, protofibrils self-assemble and bundle to form
networks of semiflexible fibers. Here we show that the extraordinary
strain-stiffening response of fibrin networks is a direct reflection of the
hierarchical architecture of the fibrin fibers. We measure the rheology of
networks of unbundled protofibrils and find excellent agreement with an affine
model of extensible wormlike polymers. By direct comparison with these data, we
show that physiological fibrin networks composed of thick fibers can be modeled
as networks of tight protofibril bundles. We demonstrate that the tightness of
coupling between protofibrils in the fibers can be tuned by the degree of
enzymatic intermolecular crosslinking by the coagulation Factor XIII.
Furthermore, at high stress, the protofibrils contribute independently to the
network elasticity, which may reflect a decoupling of the tight bundle
structure. The hierarchical architecture of fibrin fibers can thus account for
the nonlinearity and enormous elastic resilience characteristic of blood clots.Comment: 27 pages including 8 figures and Supplementary Dat
Influence of single-neutron stripping on near-barrier <sup>6</sup>He+<sup>208</sup>Pb and <sup>8</sup>He+<sup>208</sup>Pb elastic scattering
The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the 6,8He+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S-matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He
Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering
We investigate the properties of the optical model wave function for light
heavy-ion systems where absorption is incomplete, such as Ca
and O around 30 MeV incident energy. Strong focusing effects
are predicted to occur well inside the nucleus, where the probability density
can reach values much higher than that of the incident wave. This focusing is
shown to be correlated with the presence at back angles of a strong enhancement
in the elastic cross section, the so-called ALAS (anomalous large angle
scattering) phenomenon; this is substantiated by calculations of the quantum
probability flux and of classical trajectories. To clarify this mechanism, we
decompose the scattering wave function and the associated probability flux into
their barrier and internal wave contributions within a fully quantal
calculation. Finally, a calculation of the divergence of the quantum flux shows
that when absorption is incomplete, the focal region gives a sizeable
contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The
figures are only available via anonynous FTP on
ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat
Magnetic and electric properties of double-perovskites and estimation of their Curie temperatures by ab initio calculations
First principles electronic structure calculations have been carried out on
ordered double perovskites Sr_2B'B"O_6 (for B' = Cr or Fe and B" 4d and 5d
transition metal elements) with increasing number of valence electrons at the
B-sites, and on Ba_2MnReO_6 as well as Ba_2FeMoO_6. The Curie temperatures are
estimated ab initio from the electronic structures obtained with the local
spin-density functional approximation, full-potential generalized gradient
approximation and/or the LDA+U method (U - Hubbard parameter). Frozen
spin-spirals are used to model the excited states needed to evaluate the
spherical approximation for the Curie temperatures. In cases, where the induced
moments on the oxygen was found to be large, the determination of the Curie
temperature is improved by additional exchange functions between the oxygen
atoms and between oxygen and B' and B" atoms.
A pronounced systematics can be found among the experimental and/or
calculated Curie temperatures and the total valence electrons of the transition
metal elements.Comment: 8 pages, 11 figures. Submitted to the Physical Review
New Results in the Analysis of the O+Si Elastic Scattering by Modifying the Optical Potential
The elastic scattering of the O+Si system has been analyzed
with a modified potential within the framework of the optical model over a wide
energy range in the laboratory system from 29.0 to 142.5 MeV. This system has
been extensively studied over the years and a number of serious problems has
remained unsolved: The explanation of the anomalous large angle scattering
data; the out-of-phase problem between theoretical predictions and experimental
data; the reproduction of the oscillatory structure near the Coulomb barrier;
the consistent description of angular distributions together with the
excitation functions data are just some of these problems. We propose the use
of a modified potential method to explain these problems over this wide energy
range. This new method consistently improves the agreement with the
experimental data and achieves a major improvement on all the previous Optical
model calculations for this system.Comment: 19 pages with 8 figure
Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight.
Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation
- …