1,656 research outputs found

    Humour as social dreaming:Stand-up comedy as therapeutic performance

    Get PDF
    Stand-up comedy binds dramatic cultural spectacle to ritualised, intimate exposure. Examining ‘case’ examples from live comic performance, this paper describes stand-up as a kind of social dreaming. The article proposes a theoretical frame drawing on Thomas Ogden’s notion of ‘talking as dreaming’ and psychoanalytic accounts connecting humour and melancholia. Locating the stand-up comedian’s propensity for humour in a specialist capacity to hone, display and process traumata, the paper characterises stand-up as a performative oscillation evoking paranoid-schizoid and depressive anxieties. A psychosocial gloss places stand-up as a cultural resource in the service of the popular-as-therapeutic. The paper articulates complementarities between Henri Bergson’s formulations on the function of laughter and an emergent object relations account in order to help to recognise ‘containing’ and ‘cultural-restorative’ aspects of much stand-up, understood as contemporary psychosocial ritual

    Diffusion as mixing mechanism in granular materials

    Full text link
    We present several numerical results on granular mixtures. In particular, we examine the efficiency of diffusion as a mixing mechanism in these systems. The collisions are inelastic and to compensate the energy loss, we thermalize the grains by adding a random force. Starting with a segregated system, we show that uniform agitation (heating) leads to a uniform mixture of grains of different sizes. We define a characteristic mixing time, Ï„mix\tau_{mix}, and study theoretically and numerically its dependence on other parameters like the density. We examine a model for bidisperse systems for which we can calculate some physical quantities. We also examine the effect of a temperature gradient and demonstrate the appearance of an expected segregation.Comment: 15 eps figures, include

    The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP)

    Get PDF
    The Stratospheric Kinetic Inductance Polarimeter (SKIP) is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKID). The LEKIDs will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, five-day flights beginning with the 150 GHz observations.Comment: J Low Temp Phys DOI 10.1007/s10909-013-1014-3 The final publication is available at link.springer.co

    MPC for tracking with optimal closed-loop performance

    Get PDF
    Abstract-This paper deals with the tracking problem for constrained linear systems using a model predictive control (MPC) law. As it is well known, MPC provides a control law suitable for regulating a constrained linear system to a given target steady state. Asymptotic stability and constraint fulfilment for any finite prediction horizon is typically ensured by means of a suitable choice of the terminal cost and constraint. However, when the target operating point changes, the feasibility of the controller may be lost and the controller fails to track the reference. Recently, a novel MPC formulation has been proposed to solve this problem, ensuring feasibility and asymptotic convergence to any admissible steady state. On the other hand, this control law can not ensure the local optimality of the proposed controller, which is a desirable property of predictive controllers. In this paper, this controller is extended considering a generalized offset cost function. Sufficient conditions on this function are given to ensure the local optimality property. Besides, this novel formulation allows to consider as target operation points, states which may be not equilibrium points of the linear systems. In this case, it is proved in this paper that the proposed control law steers the system to an admissible steady state (different to the target) which is optimal with relation to the offset cost function. Thanks to the proposed generalization, the offset cost function could be chosen according to some steady performance criterium. Therefore, the proposed controller for tracking achieves an optimal closed-loop performance during the transient as well as an optimal steady state in case of not admissible target. These properties are illustrated in an example

    A LEKID-based CMB instrument design for large-scale observations in Greenland

    Get PDF
    We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to < 4<\,4 K by a closed-cycle 4^4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150~GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267~GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34\% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15~arcmin at 150~GHz) makes the instrument sensitive to 5<ℓ<10005 < \ell < 1000 in the angular power spectra

    Financial impact of sheeppox and goatpox and estimated profitability of vaccination for subsistence farmers in selected northern states of Nigeria

    Get PDF
    Sheeppox and goatpox (SGP) are important transboundary diseases, endemic in Nigeria, causing severe clinical manifestations, impacting production, and resulting in economic losses. Vaccination is an effective control measure against SGP in endemic countries but is not currently implemented in Nigeria. This study aimed to estimate SGP financial impact and assess economic viability of SGP vaccination at the herd and regional level under different scenarios in Northern Nigeria. Integrated stochastic production and economic herd models were developed for transhumance and sedentary herds. Models were run for two disease scenarios (severely and slightly affected) and with and without vaccination, with data parameterisation from literature estimates, field survey and authors’ experience. Herd-level net financial impact of the disease and its vaccination was assessed using gross margin (GM) and partial budget analyses. These were then used to assess regional financial impact of disease and profitability of a 3-year vaccination programme using a cost-benefit analysis. The regional-analysis was performed under 0 %, 50 % and 100 % government subsidy scenarios; as a standalone programme or in combination with other existing vaccination programmes; and for risk-based and non-risk-based intervention. Median SGP losses per reproductive female were £27 (90 % CI: £31-£22), and £5 (90 % CI: £7-£3), in sedentary, and £30 (90 % CI: £41-21), and £7 (90 % CI: £10-£3), in transhumance herds, for severely and slightly affected scenarios respectively. Selling animals at a reduced price, selling fewer young animals, and reduced value of affected animals remaining in the herd were the greatest contributors to farmer’s SGP costs. SGP-affected herds realised a GM reduction of up to 121 % in sedentary and 138 % in transhumance. Median estimated regional SGP cost exceeded £24 million. Herd-level median benefits of vaccination per reproductive female were £23.76 (90 % CI: £19.28-£28.61), and £4.01 (90 % CI: £2.36-£6.31), in sedentary, and £26.85 (90 % CI: £17.99-£37.02) and £7.45 (90 % CI: £3.47-£15.14) in transhumance herds, in severely and slightly affected scenarios, respectively. Median benefit: cost ratio (BCR) for severely affected herds at 50% subsidies was 6.62 (90% CI: 5.30-8.90) for sedentary, and 5.14 (90% CI: 3.31-13.81) for transhumance herds. The regional SGP vaccination standalone programme BCR: 7–27, regional SGP vaccination with existing vaccination programme BCR: 7–228 and vaccinating high-risk areas BCR: 19–439 were found to be economically viable for all subsidy levels explored. Vaccinating low-risk areas only realised benefits with 100 % of government subsidies. This study further increases understanding of SGP’s impact within Northern Nigeria and demonstrates vaccination is an economically viable control strategy at the herd-level and also regionally, depending on the strategy and government subsidy levels considered

    Design of Bioelectrochemical Interfaces Assisted by Molecular Dynamics Simulations

    Get PDF
    The design of bioelectrochemical interfaces (BEI) is an interesting topic that recently demands attention. The synergy between biomolecules and chemical components is necessary to achieve high molecular selectivity and sensitivity for the development of biosensors, synthesis of different compounds, or catalytic processes. For most BEI, the charge transfer process occurs in environments with particular chemical conditions; modeling these environments is a challenging task and requires multidisciplinary efforts. These interfaces can be composed of biomolecules, such as proteins, DNA, or more complex systems like microorganisms. Oxidoreductases enzymes are good candidates, among others, due to their catalytic activities and structural characteristics. In BEI, enzymes are immobilized on conductive surfaces to improve charge transfer processes. Covalent immobilization is the most common method to prolong lifetime or modulate the detection process. However, it is necessary to implement new methodologies that allow the selection of the best candidates for a more efficient design. Homology modeling of oxidoreductases combined with Molecular Dynamics (MD) simulation methods are alternative and already routinely used tools to investigate the structure, dynamics, and thermodynamics of biological molecules. Our motivation is to show different techniques of molecular modeling (Homology Modeling, Gaussian accelerated molecular dynamics, directed adaptive molecular dynamics and electrostatic surface calculations), and using horseradish peroxidase as a model to understand the interactions between biomolecules and gold nanoclusters (as current collector). Additionally, we present our previous studies considering molecular simulations and we discuss recent advances in biomolecular simulations aimed at biosensor design

    Glass Transition in a 2D Lattice Model

    Full text link
    The dynamics of compaction of hard cross-shaped pentamers on the 2D square lattice is investigated. The addition of new particles is controlled by diffusive relaxation. It is shown that the filling process terminates at a glassy phase with a limiting coverage density \rho_{rcp}=0.171626(3), lower than the density of closest packing \rho_{cp}=0.2, and the long time filling rate vanishes like (\rho_{rcp}-\rho(t))^2. For the entire density regime the particles form an amorphous phase, devoid of any crystalline order. Therefore, the model supports a stable random packing state, as opposed to the hard disks system. Our results may be relevant to recent experiments studying the clustering of proteins on bilayer lipid membranes
    • …
    corecore