241 research outputs found
Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions
We present and analyze three-dimensional data cubes of Neptune from the
OSIRIS integral-field spectrograph on the 10-m Keck telescope, from July 2009.
These data have a spatial resolution of 0.035"/pixel and spectral resolution of
R~3800 in the H and K broad bands. We focus our analysis on regions of
Neptune's atmosphere that are near-infrared dark- that is, free of discrete
bright cloud features. We use a forward model coupled to a Markov chain Monte
Carlo algorithm to retrieve properties of Neptune's aerosol structure and
methane profile above ~4 bar in these near-infrared dark regions.
Using a set of high signal-to-noise spectra in a cloud-free band from 2-12N,
we find that Neptune's cloud opacity is dominated by a compact, optically thick
cloud layer with a base near 3 bar and composed of low albedo, forward
scattering particles, with an assumed characteristic size of ~1m. Above
this cloud, we require a vertically extended haze of smaller (~0.1 m)
particles, which reaches from the upper troposphere (~0.6 bar) into the
stratosphere. The particles in this haze are brighter and more isotropically
scattering than those in the deep cloud. When we extend our analysis to 18
cloud-free locations from 20N to 87S, we observe that the optical depth in
aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and
high-southern latitudes relative to low latitudes.
We also consider Neptune's methane (CH) profile, and find that our
retrievals indicate a strong preference for a low methane relative humidity at
pressures where methane is expected to condense. Our preferred solution at most
locations is for a methane relative humidity below 10% near the tropopause in
addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a
trend of lower CH columns above 2.5 bar at mid- and high-southern latitudes
over low latitudes.Comment: Published in Icarus: 15 September 201
Occultation Light Curves of Io's Hot Spots in 2014
We present ground-based observations of Io during Spring 2014, contributing to decadal timelines of individual hot spots' volcanic activity
Thermal Properties of the Icy Galilean Satellites from Millimeter ALMA Observations
We present spatially-resolved maps of the leading and trailing hemispheres of Europa, Ganymede, and Callisto from ALMA millimeter wavelength observations
Occultation Light Curves of Io's Hot Spots in 2014
We present ground-based observations of Io during Spring 2014, contributing to decadal timelines of individual hot spots' volcanic activity
Thermal Properties of the Icy Galilean Satellites from Millimeter ALMA Observations
We present spatially-resolved maps of the leading and trailing hemispheres of Europa, Ganymede, and Callisto from ALMA millimeter wavelength observations
A Hybrid Approach to Causality Analysis
In component-based safety-critical systems, when a system safety property is violated, it is necessary to analyze which components are the cause. Given a system execution trace that exhibits component faults leading to a property violation, our causality analysis formalizes a notion of counterfactual reasoning (\what would the system behavior be if a component had been correct? ) and algorithmically derives such alternative system behaviors, without re-executing the system itself. In this paper, we show that we can improve precision of the analysis if 1) we can emulate execution of components instead of relying on their contracts, and 2) take into consideration input/output dependencies between components to avoid blaming components for faults induced by other components. We demonstrate the utility of the extended analysis with a case study for a closed-loop patient-controlled analgesia system
Analysis of Neptune's 2017 Bright Equatorial Storm
We report the discovery of a large (8500 km diameter) infrared-bright
storm at Neptune's equator in June 2017. We tracked the storm over a period of
7 months with high-cadence infrared snapshot imaging, carried out on 14 nights
at the 10 meter Keck II telescope and 17 nights at the Shane 120 inch reflector
at Lick Observatory. The cloud feature was larger and more persistent than any
equatorial clouds seen before on Neptune, remaining intermittently active from
at least 10 June to 31 December 2017. Our Keck and Lick observations were
augmented by very high-cadence images from the amateur community, which
permitted the determination of accurate drift rates for the cloud feature. Its
zonal drift speed was variable from 10 June to at least 25 July, but remained a
constant m s from 30 September until at least 15
November. The pressure of the cloud top was determined from radiative transfer
calculations to be 0.3-0.6 bar; this value remained constant over the course of
the observations. Multiple cloud break-up events, in which a bright cloud band
wrapped around Neptune's equator, were observed over the course of our
observations. No "dark spot" vortices were seen near the equator in HST imaging
on 6 and 7 October. The size and pressure of the storm are consistent with
moist convection or a planetary-scale wave as the energy source of convective
upwelling, but more modeling is required to determine the driver of this
equatorial disturbance as well as the triggers for and dynamics of the observed
cloud break-up events.Comment: 42 pages, 14 figures, 6 tables; Accepted to Icaru
Discovery of a powerful, transient, explosive thermal event at Marduk Fluctus, Io, in Galileo NIMS data.
Analysis of Galileo Near Infrared Mapping Spectrometer (NIMS) observations of Marduk Fluctus, a volcano on the jovian moon Io, reveals a style of volcanic activity not previously seen there – a powerful thermal event lasting only a few minutes in 1997. The thermal emission rapidly fades, suggesting extremely rapid cooling of small clasts. The duration and evolution of the explosive eruption is akin to what might be expected from a strombolian or vulcanian explosion. The presence of such events provides an additional volcanic process that can be imaged by future missions with the intent of determining lava composition from eruption temperature, an important constraint on the internal composition of Io. These data promise to be of particular use in understanding the mechanics of explosive volcanic processes on Io
Tidal Heating: Lessons from Io and the Jovian System (Report from the KISS Workshop)
Summary of the Keck Institute for Space Studies workshop entitled "Tidal Heating: Lessons from Io and the Jovian System," held on October 15-19, 2018
- …