131 research outputs found

    DNA Sequencing

    Full text link

    Use of local anaesthetics and adjuncts for spinal and epidural anaesthesia and analgesia at German and Austrian University Hospitals: an online survey to assess current standard practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present anonymous multicenter online survey was conducted to evaluate the application of regional anaesthesia techniques as well as the used local anaesthetics and adjuncts at German and Austrian university hospitals.</p> <p>Methods</p> <p>39 university hospitals were requested to fill in an online questionnaire, to determine the kind of regional anaesthesia and preferred drugs in urology, obstetrics and gynaecology.</p> <p>Results</p> <p>33 hospitals responded. No regional anaesthesia is conducted in 47% of the minor gynaecological and 44% of the urological operations; plain bupivacaine 0.5% is used in 38% and 47% respectively. In transurethral resections of the prostate and bladder no regional anaesthesia is used in 3% of the responding hospitals, whereas plain bupivacaine 0.5% is used in more than 90%. Regional anaesthesia is only used in selected major gynaecological and urological operations. On the contrary to the smaller operations, the survey revealed a large variety of used drugs and mixtures. Almost 80% prefer plain bupivacaine or ropivacaine 0.5% in spinal anaesthesia in caesarean section. Similarly to the use of drugs in major urological and gynaecological operations a wide range of drugs and adjuncts is used in epidural anaesthesia in caesarean section and spontaneous delivery.</p> <p>Conclusions</p> <p>Our results indicate a certain agreement in short operations in spinal anaesthesia. By contrast, a large variety concerning the anaesthesiological approach in larger operations as well as in epidural analgesia in obstetrics could be revealed, the causes of which are assumed to be primarily rooted in particular departmental structures.</p

    Direct Observation of Single Amyloid-β(1-40) Oligomers on Live Cells: Binding and Growth at Physiological Concentrations

    Get PDF
    Understanding how amyloid-β peptide interacts with living cells on a molecular level is critical to development of targeted treatments for Alzheimer's disease. Evidence that oligomeric Aβ interacts with neuronal cell membranes has been provided, but the mechanism by which membrane binding occurs and the exact stoichiometry of the neurotoxic aggregates remain elusive. Physiologically relevant experimentation is hindered by the high Aβ concentrations required for most biochemical analyses, the metastable nature of Aβ aggregates, and the complex variety of Aβ species present under physiological conditions. Here we use single molecule microscopy to overcome these challenges, presenting direct optical evidence that small Aβ(1-40) oligomers bind to living neuroblastoma cells at physiological Aβ concentrations. Single particle fluorescence intensity measurements indicate that cell-bound Aβ species range in size from monomers to hexamers and greater, with the majority of bound oligomers falling in the dimer-to-tetramer range. Furthermore, while low-molecular weight oligomeric species do form in solution, the membrane-bound oligomer size distribution is shifted towards larger aggregates, indicating either that bound Aβ oligomers can rapidly increase in size or that these oligomers cluster at specific sites on the membrane. Calcium indicator studies demonstrate that small oligomer binding at physiological concentrations induces only mild, sporadic calcium leakage. These findings support the hypothesis that small oligomers are the primary Aβ species that interact with neurons at physiological concentrations

    Postoperative acute kidney injury in adult non-cardiac surgery:joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative

    Get PDF
    Postoperative acute kidney injury (PO-AKI) is a common complication of major surgery that is strongly associated with short-term surgical complications and long-term adverse outcomes, including increased risk of chronic kidney disease, cardiovascular events and death. Risk factors for PO-AKI include older age and comorbid diseases such as chronic kidney disease and diabetes mellitus. PO-AKI is best defined as AKI occurring within 7 days of an operative intervention using the Kidney Disease Improving Global Outcomes (KDIGO) definition of AKI; however, additional prognostic information may be gained from detailed clinical assessment and other diagnostic investigations in the form of a focused kidney health assessment (KHA). Prevention of PO-AKI is largely based on identification of high baseline risk, monitoring and reduction of nephrotoxic insults, whereas treatment involves the application of a bundle of interventions to avoid secondary kidney injury and mitigate the severity of AKI. As PO-AKI is strongly associated with long-term adverse outcomes, some form of follow-up KHA is essential; however, the form and location of this will be dictated by the nature and severity of the AKI. In this Consensus Statement, we provide graded recommendations for AKI after non-cardiac surgery and highlight priorities for future research

    Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods

    Get PDF
    This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein–protein and protein–immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein–protein and protein–immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS
    • …
    corecore