832 research outputs found
Terahertz generation in Czochralski grown periodically poled Mg:Y:LiNbO3 via optical rectification
Using a canonical pump-probe experimental technique, we studied the terahertz
(THz) waves generation and detection via optical rectification and mixing in
Czochralski-grown periodically poled Mg:Y:LiNbO3 (PPLN) crystals. THz waves
with frequencies at 1.37 THz and 0.68 THz as well as 1.8 THz were obtained for
PPLN with nonlinear grating periods of 0.03 and 0.06 mm, respectively. A
general theoretical model was developed by considering the dispersion and
damping of low frequency phonon-polariton mode. Our results show that THz waves
are generated in forward and backward directions via pumping pulse
rectification. The generated THz waves depend on the spectral shape of the
laser pulses, quasi-phase mismatches and dispersion characteristics of a
crystal.Comment: 25 pages, 4 figure
Sub-millimeter Observations of Giant Molecular Clouds in the Large Magellanic Cloud: Temperature and Density as Determined from J=3-2 and J=1-0 transitions of CO
We have carried out sub-mm 12CO(J=3-2) observations of 6 giant molecular
clouds (GMCs) in the Large Magellanic Cloud (LMC) with the ASTE 10m sub-mm
telescope at a spatial resolution of 5 pc and very high sensitivity. We have
identified 32 molecular clumps in the GMCs and revealed significant details of
the warm and dense molecular gas with n(H2) 10 cm and
Tkin 60 K. These data are combined with 12CO(J=1-0) and 13CO(J=1-0)
results and compared with LVG calculations. We found that the ratio of
12CO(J=3-2) to 12CO(J=1-0) emission is sensitive to and is well correlated with
the local Halpha flux. We interpret that differences of clump propeties
represent an evolutionary sequence of GMCs in terms of density increase leading
to star formation.Type I and II GMCs (starless GMCs and GMCs with HII regions
only, respectively) are at the young phase of star formation where density does
not yet become high enough to show active star formation and Type III GMCs
(GMCs with HII regions and young star clusters) represents the later phase
where the average density is increased and the GMCs are forming massive stars.
The high kinetic temperature correlated with \Halpha flux suggests that FUV
heating is dominant in the molecular gas of the LMC.Comment: 74 pages, including 41 figures, accepted for publication in ApJ
Soft X-ray harmonic comb from relativistic electron spikes
We demonstrate a new high-order harmonic generation mechanism reaching the
`water window' spectral region in experiments with multi-terawatt femtosecond
lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving
uJ/sr pulses. Harmonics are collectively emitted by an oscillating electron
spike formed at the joint of the boundaries of a cavity and bow wave created by
a relativistically self-focusing laser in underdense plasma. The spike
sharpness and stability are explained by catastrophe theory. The mechanism is
corroborated by particle-in-cell simulations
Literature-based discovery of diabetes- and ROS-related targets
Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe
Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers
We present femtosecond transient absorption measurements on -conjugated
supramolecular assemblies in a high pump fluence regime.
Oligo(\emph{p}-phenylenevinylene) monofunctionalized with
ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane
solution below 75C at a concentration of M. We
observe exciton bimolecular annihilation in MOPV stacks at high excitation
fluence, indicated by the fluence-dependent decay of B-exciton
spectral signatures, and by the sub-linear fluence dependence of time- and
wavelength-integrated photoluminescence (PL) intensity. These two
characteristics are much less pronounced in MOPV solution where the phase
equilibrium is shifted significantly away from supramolecular assembly,
slightly below the transition temperature. A mesoscopic rate-equation model is
applied to extract the bimolecular annihilation rate constant from the
excitation fluence dependence of transient absorption and PL signals. The
results demonstrate that the bimolecular annihilation rate is very high with a
square-root dependence in time. The exciton annihilation results from a
combination of fast exciton diffusion and resonance energy transfer. The
supramolecular nanostructures studied here have electronic properties that are
intermediate between molecular aggregates and polymeric semiconductors
Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts
Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development
Ising Universality in Three Dimensions: A Monte Carlo Study
We investigate three Ising models on the simple cubic lattice by means of
Monte Carlo methods and finite-size scaling. These models are the spin-1/2
Ising model with nearest-neighbor interactions, a spin-1/2 model with
nearest-neighbor and third-neighbor interactions, and a spin-1 model with
nearest-neighbor interactions. The results are in accurate agreement with the
hypothesis of universality. Analysis of the finite-size scaling behavior
reveals corrections beyond those caused by the leading irrelevant scaling
field. We find that the correction-to-scaling amplitudes are strongly dependent
on the introduction of further-neighbor interactions or a third spin state. In
a spin-1 Ising model, these corrections appear to be very small. This is very
helpful for the determination of the universal constants of the Ising model.
The renormalization exponents of the Ising model are determined as y_t = 1.587
(2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q =
^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry.
The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546
(10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal
of Physics A
Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki
In late 2010, the nation-wide screening of pregnant women for human T-lymphotropic virus type 1 (HTLV-1) infection was implemented in Japan to prevent milk-borne transmission of HTLV-1. In the late 1970s, recognition of the adult T-cell leukemia (ATL) cluster in Kyushu, Japan, led to the discovery of the first human retrovirus, HTLV-1. In 1980, we started to investigate mother-to-child transmission (MTCT) for explaining the peculiar endemicity of HTLV-1. Retrospective and prospective epidemiological data revealed the MTCT rate at âź20%. Cell-mediated transmission of HTLV-1 without prenatal infection suggested a possibility of milk-borne transmission. Common marmosets were successfully infected by oral inoculation of HTLV-1 harboring cells. A prefecture-wide intervention study to refrain from breast-feeding by carrier mothers, the ATL Prevention Program Nagasaki, was commenced in July 1987. It revealed a marked reduction of HTLV-1 MTCT by complete bottle-feeding from 20.3% to 2.5%, and a significantly higher risk of short-term breast-feeding (<6 months) than bottle-feeding (7.4% vs. 2.5%, P < 0.001)
Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability
In this article, we present a detailed study of structureâactivity relationships in diquaternized 2,2â˛-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, Ď-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^â salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense Ď â Ď^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of Ď-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by âoff-diagonalâ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4â˛-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior
- âŚ