91 research outputs found

    Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts

    Get PDF
    Objectives. The aim of this study was to evaluate the load-bearing capacity and microstrain of incisors restored with posts of various kinds. Both prefabricated titanium posts and different fiber-reinforced composite posts were tested.Methods. The crowns of human incisors were cut and post preparation was carried out. The roots were divided into groups: (1) prefabricated serrated titanium posts, (2) prefabricated carbon fiber-reinforced composite posts, (3) individually formed glass fiber-reinforced composite posts with the canal full of fibers, and (4) individually formed "split" glass fiber-reinforced composite posts. The posts were cemented and composite crowns were made. Intact human incisors were used as reference. All roots were embedded in acrylic resin cylinders and stored at room temperature in water. Static load was applied under a loading angle of 45 degrees using a universal testing machine. On half of the specimens microstrain was measured with strain gages and an acoustic emission analysis was carried out. Failure mode assessment was also made.Results. The group with titanium posts showed highest number of unfavorable failures compared to the groups with fiber-reinforced composite posts. Significance. With fiber-reinforced composite posts the failures may more often be favorable compared to titanium posts, which clinically means repairable failures. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved

    Evaluation of a CTA-based convolutional neural network for infarct volume prediction in anterior cerebral circulation ischaemic stroke

    Get PDF
    Background Computed tomography angiography (CTA) imaging is needed in current guideline-based stroke diagnosis, and infarct core size is one factor in guiding treatment decisions. We studied the efficacy of a convolutional neural network (CNN) in final infarct volume prediction from CTA and compared the results to a CT perfusion (CTP)-based commercially available software (RAPID, iSchemaView). Methods We retrospectively selected 83 consecutive stroke cases treated with thrombolytic therapy or receiving supportive care that presented to Helsinki University Hospital between January 2018 and July 2019. We compared CNN-derived ischaemic lesion volumes to final infarct volumes that were manually segmented from follow-up CT and to CTP-RAPID ischaemic core volumes. Results An overall correlation of r = 0.83 was found between CNN outputs and final infarct volumes. The strongest correlation was found in a subgroup of patients that presented more than 9 h of symptom onset (r = 0.90). A good correlation was found between the CNN outputs and CTP-RAPID ischaemic core volumes (r = 0.89) and the CNN was able to classify patients for thrombolytic therapy or supportive care with a 1.00 sensitivity and 0.94 specificity. Conclusions A CTA-based CNN software can provide good infarct core volume estimates as observed in follow-up imaging studies. CNN-derived infarct volumes had a good correlation to CTP-RAPID ischaemic core volumes.Peer reviewe

    Automatic head computed tomography image noise quantification with deep learning

    Get PDF
    Purpose: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation.Methods: Two approaches were investigated for noise image estimation of a single acquisition image: direct noise image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (N-train = 37, N-test( )= 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform regions and in automated noise and contrast assessment.Results: The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest MSE on clinical labeled uniform regions.Conclusions: DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise estimation combined with tissue segmentation may enable more comprehensive image quality characterization.Peer reviewe

    Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study

    Get PDF
    In stroke imaging, CT angiography (CTA) is used for detecting arterial occlusions. These images could also provide information on the extent of ischemia. The study aim was to develop and evaluate a convolutional neural network (CNN)-based algorithm for detecting and segmenting acute ischemic lesions from CTA images of patients with suspected middle cerebral artery stroke. These results were compared to volumes reported by widely used CT perfusion-based RAPID software (IschemaView). A 42-layer-deep CNN was trained on 50 CTA volumes with manually delineated targets. The lower bound for predicted lesion size to reliably discern stroke from false positives was estimated. The severity of false positives and false negatives was reviewed visually to assess the clinical applicability and to further guide the method development. The CNN model corresponded to the manual segmentations with voxel-wise sensitivity 0.54 (95% confidence interval: 0.44-0.63), precision 0.69 (0.60-0.76), and Sorensen-Dice coefficient 0.61 (0.52-0.67). Stroke/nonstroke differentiation accuracy 0.88 (0.81-0.94) was achieved when only considering the predicted lesion size (i.e., regardless of location). By visual estimation, 46% of cases showed some false findings, such as CNN highlighting chronic periventricular white matter changes or beam hardening artifacts, but only in 9% the errors were severe, translating to 0.91 accuracy. The CNN model had a moderately strong correlation to RAPID-reported T-max > 10 s volumes (Pearson's r = 0.76 (0.58-0.86)). The results suggest that detecting anterior circulation ischemic strokes from CTA using a CNN-based algorithm can be feasible when accompanied with physiological knowledge to rule out false positives.Peer reviewe

    Effect of ultraviolet light treatment on surface hydrophilicity and human gingival fibroblast response on nanostructured titanium surfaces

    Get PDF
    This study was designed to investigate the effect of nanostructured TiO2 coatings on human gingival fibroblast and to explore the influence of ultraviolet (UV) light on surface wettability and cellular response. Ti-6Al-4V titanium alloy discs (n=96) were divided into three groups: a sol-gel-derived MetAlive (MA) coating; hydrothermal (HT) coating; and a non-coated (NC) group. Forty-eight titanium substrates were further treated with UV light for 15min. The water contact angles of the substrates were measured using the sessile drop method. Human gingival fibroblasts were used to evaluate the cell adhesion strength and cell proliferation on experimental surfaces. The strength of cell adhesion against enzymatic detachment was studied after 6hr of adhesion using gentle trypsinization for 15min at room temperature. A fluorescence microscope was used for cell imaging (Zeiss-stereo-lumar-v12), and images were analyzed for cell counting, and the percentage of detached cells were calculated. The proliferation of cultured cells up to 10days was determined according to the cell activity using Alamar Blueassay. The HT group had the lowest contact angle value (31.1 degrees) followed by MetAlive (35.3 degrees), whereas the NC group had the highest contact angle (50.3 degrees). After UV light treatment, all surfaces become considerably more hydrophilic. There was a significant difference in the amount of adherent cells between sol-gel and HT groups when compared with the NC group (p<.05) with detachment percentages of 35.8%, 36.4%, and 70.7%, respectively. All substrate types showed an increase in cell proliferation rate until 10days. It can be concluded that nanostructured titanium oxide implant surfaces, obtained by sol-gel and HT coating methods, enhance the surface wettability and improve human gingival fibroblast function in terms of adhesion and proliferation rate when compared with non-coated surfaces. UV light treatment clearly enhances the wettability of all titanium surfaces

    TiO2 Coating and UV Photofunctionalization Enhance Blood Coagulation on Zirconia Surfaces

    Get PDF
    This in vitro study was designed to evaluate the effect of sol-gel derived TiO2 coating on blood coagulation, blood protein adsorption, and platelet response on zirconia surfaces. Square-shaped zirconia (n=96) (10x10x2 mm) was cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n=32) were fabricated: (a) zirconia coated with sol-gel derived TiO2, (b) zirconia coated with sol-gel derived TiO2 and treated with ultraviolet (UV) irradiation for 1 hour, and (c) non-coated zirconia as control. The coatings were prepared from tetraisopropyl orthotitanate solution by dip-coating. The thrombogenicity of the specimens was evaluated using a whole blood kinetic clotting time method where the extent of blood clotting was evaluated at 10, 20, 30, 40, 50, and 60 minutes (n=4/time point, total n=24/group). Scanning electron microscope images were taken to observe platelet morphologies after 1-hour incubation with platelet-rich plasma (PRP) (n=5/group). Surface characteristics were visualized using atomic force microscopy (n=1/group). Adsorption of plasma proteins and fibronectin on each surface was studied by gel electrophoresis (n=2/group). Significant differences were observed in blood coagulation between the test groups at 20-, 30-, 40-, and 50-minute time points (p<0.005). UV treated TiO2 coated specimens showed fastest blood coagulation followed by TiO2 coated and non-coated specimens. Furthermore, platelets appeared at a higher activation state on coated specimens. Gel electrophoresis revealed no difference in protein adsorption among the experimental groups. In summary, TiO2 coatings promoted blood coagulation, and it was further enhanced by UV treatment, which has the potential to hasten the wound healing process in vivo

    A Twenty-First Century Assessment of Values Across the Global

    Get PDF
    This article provides current Schwartz Values Survey (SVS) data from samples of business managers and professionals across 50 societies that are culturally and socioeconomically diverse. We report the society scores for SVS values dimensions for both individual- and societallevel analyses. At the individual-level, we report on the ten circumplex values sub-dimensions and two sets of values dimensions (collectivism and individualism; openness to change, conservation, self-enhancement, and self- transcendence). At the societal-level, we report on the values dimensions of embeddedness, hierarchy, mastery, affective autonomy, intellectual autonomy, egalitarianism, and harmony. For each society, we report the Cronbach’s a statistics for each values dimension scale to assess their internal consistency (reliability) as well as report interrater agreement (IRA) analyses to assess the acceptability of using aggregated individual level values scores to represent country values. We also examined whether societal development level is related to systematic variation in the measurement and importance of values. Thus, the contributions of our evaluation of the SVS values dimensions are two-fold. First, we identify the SVS dimensions that have cross-culturally internally reliable structures and withinsociety agreement for business professionals. Second, we report the society cultural values scores developed from the twenty-first century data that can be used as macro-level predictors in multilevel and single-level international business research

    Decomposing the Impact of Immigration on House Prices

    Full text link
    corecore