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Abstract

Background: Computed tomography angiography (CTA) imaging is needed in current guideline-based stroke
diagnosis, and infarct core size is one factor in guiding treatment decisions. We studied the efficacy of a
convolutional neural network (CNN) in final infarct volume prediction from CTA and compared the results to a CT
perfusion (CTP)-based commercially available software (RAPID, iSchemaView).

Methods: We retrospectively selected 83 consecutive stroke cases treated with thrombolytic therapy or receiving
supportive care that presented to Helsinki University Hospital between January 2018 and July 2019. We compared
CNN-derived ischaemic lesion volumes to final infarct volumes that were manually segmented from follow-up CT
and to CTP-RAPID ischaemic core volumes.

Results: An overall correlation of r = 0.83 was found between CNN outputs and final infarct volumes. The strongest
correlation was found in a subgroup of patients that presented more than 9 h of symptom onset (r = 0.90). A good
correlation was found between the CNN outputs and CTP-RAPID ischaemic core volumes (r = 0.89) and the CNN
was able to classify patients for thrombolytic therapy or supportive care with a 1.00 sensitivity and 0.94 specificity.

Conclusions: A CTA-based CNN software can provide good infarct core volume estimates as observed in follow-up
imaging studies. CNN-derived infarct volumes had a good correlation to CTP-RAPID ischaemic core volumes.
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Key points

� A computed tomography angiography (CTA)-based
convolutional neural network (CNN) can predict
infarct volume in anterior circulation ischaemic
stroke.

� A CTA-based CNN estimates of ischaemic lesion
volumes correlated well with infarct volumes mea-
sured from follow-up computed tomography images.

� Our method had a good correlation with computed
tomography perfusion-RAPID estimated infarct core
volumes.

Background
Artificial intelligence applications have shown promise
in the detection of acute ischaemic stroke (AIS) from
computed tomography (CT)-based studies. Published
studies to date have mainly focused on the detection of
anterior circulation AIS from non-contrast CT scans,
large vessel occlusions from non-contrast CT or CT
angiography (CTA) and automated Alberta Stroke
Programme Early CT Score (ASPECTS) scoring from
non-contrast CT scans. Many of these studies have
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looked at the performance of commercially available
stroke diagnosis software. According to a recent review
article, the current literature reports a broad sensitivity
metrics for the detection of AIS, the mean sensitivity be-
ing 68% [1].
Currently, perfusion imaging is being widely used in

determining ischaemic core (unsalvageable tissue) and
penumbra (salvageable tissue) volumes. A CT perfusion
(CTP) study is faster and more widely available than the
current gold standard magnetic resonance imaging and
provides acceptably accurate estimates to aid in treat-
ment selection. CTP estimations of ischaemic core and
penumbra are used in patient selection for thrombolytic
therapy and mechanical thrombectomy [2, 3]. Large
studies demonstrating the safety and efficacy of
thrombolytic therapy in the extended (4.5–9 h) time
window have used ischaemic core volume thresholds of
70 and 100 mL to determine eligibility for thrombolytic
therapy [4, 5]. Recent studies have evaluated the safety
of intravenous thrombolysis in patients with AIS of un-
witnessed onset at 4.5–24 h since last known well and
also in patients with wake-up stroke in a treatment win-
dow that was 9 h after the midpoint of the time they fell
asleep to the time they woke with symptoms [6]. The
DAWN study demonstrated the efficacy and safety of
thrombectomy in patients with occlusion of the intracra-
nial internal carotid artery or proximal middle cerebral
artery in patients who had last been known to be well
6–24 h earlier and who had a mismatch between the se-
verity of the clinical deficit and the infarct core [3]. This
means that patients were treated up to almost 16 h after
the time the patient was last known to be well. However,
availability issues in smaller hospitals, increased radi-
ation dose and susceptibility to motion artefacts are
downsides of CTP. CTA on the other hand is more
readily available and provides the possible presence and
site of arterial occlusion.
Three studies have investigated the use of artificial

intelligence in detecting anterior circulation AIS from
single-phase CTA source images (CTA-SI) with
promising results. Our previous study showed that an
acute ischaemic stroke can be detected with 3D con-
volutional neural network-based software from CTA-
SI with high sensitivity and specificity [7]. A study by
Sheth et al. showed that brain symmetry can be lever-
aged to accurately detect ischaemic related changes
and large vessel occlusions from CTA-SI [8]. Hilbert
et al. demonstrated that functional and reperfusion
outcome of treatment could be predicted from a
CTA-SI volume reduced to a single axial plane using
maximum intensity projection [9]. None of these earl-
ier publications have compared how these changes
would correlate to infarct size and location from
follow-up imaging studies.

In this study, our aim was to determine the accuracy
of our previously developed convolutional neural net-
work (CNN) model in final infarct volume prediction
from CTA-SI in anterior circulation ischaemic stroke in
patients treated conservatively or with intravenous
thrombolysis. We also sought to determine the CNNs
anatomical accuracy using ASPECTS regions and to
compare the CNNs performance to a widely used, com-
mercially available software (CTP-RAPID, iSchemaView,
Menlo Park, CA) in infarct core estimation in the acute
setting to evaluate the efficacy of our method in treat-
ment selection. This could be useful especially in hospi-
tals where CTP may not be available, or, as CTA is
readily acquired in current AIS imaging protocols, the
CNN prediction could complement a study where CTP
reading has proven uncertain or inconclusive.

Methods
Helsinki University Hospital ethical committee approved
this retrospective study and patients’ informed consent
was waived.

Study population
We retrospectively studied the clinical and imaging find-
ings of consecutive stroke suspected cases that presented
to Helsinki University Hospital between January 2018
and July 2019. Ninety-one patients met the following in-
clusion criteria: (1) stroke code activated, (2) admission
stroke protocol imaging performed using fast CTA-SI
acquisition protocol and CTP, (3) patient received either
thrombolytic therapy or supportive treatment and (4) a
discernible infarct on follow-up non-contrast CT study
performed no later than 6 days after the onset of symp-
toms. Patients treated with mechanical thrombectomy
were excluded from this study. Six patients were ex-
cluded due to failed perfusion studies and two patients
due to poor quality follow-up CT leaving a total of 83
patients for the analysis. The mean age of these patients
was 69 years (SD 11.6, range 41–92), 49 were male and
34 were female as shown in Table 1. Thirty-seven pa-
tients received thrombolytic therapy.

Image acquisition and pre-processing
All patients were imaged in the acute setting using a
Somatom Definition Edge (Siemens Healthineers,
Erlangen, Germany) 128-slice CT scanner. The CTA im-
aging parameters were tube voltage 120 kVp, reference
current time 150 mAs, pitch 1.3, reconstruction kernel
I30f and slice thickness/increment 0.75/0.5 mm. The
iodine concentration of the contrast agent was 350 mg/
mL with an amount of 50 mL and injection rate of 5
mL/s. The timing of the scan was 12 s after time to peak
of the test bolus. CTP imaging parameters were tube
voltage 80 kVp and reference current time 120 mAs,
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pitch 0.5 and reconstruction kernel H20f with a contrast
agent amount of 45 mL and injection rate of 6 mL/s.
The follow-up CT studies used to assess final infarct vol-
umes were performed with various CT scanners in dif-
ferent hospitals. The majority of the follow-up studies
(73%) were performed 24 h after admission with a me-
dian time interval of 36 h (interquartile range [IQR] 12–
36 h). Images were anonymised and stored on a server
running the Extensible Neuroimaging Archive Toolkit
version 1.1.6 [10].
The infarcted regions were segmented on follow-up

CT scans in consensus by a senior neuroradiologist
(M.K.) and a radiologist in training (L.H.), with over 20
and 5 years of experience, respectively, using 3D Slicer
image processing and visualisation platform [11]. The
CNN was trained on CTA-SI volumes of 20 non-stroke
and 20 stroke patients with manually delineated lesion
targets. It consisted of a two-channel input, a total of 40
3D convolutional layers with 3 × 3 × 3 kernel size, 16 fil-
ters each and valid padding, followed by a fully con-
nected layer with 50 neurons and a two-neuron output
(lesion/background) with softmax activation producing
voxel-by-voxel lesion presence confidences. Skip connec-
tions passing single layers were used to encourage gradi-
ent propagation. The network was fed with 147 × 147 ×
147-voxel sub-volumes with equal number of stroke le-
sion positive and negative sub-volumes in each batch.
The second input channel was the corresponding (left-
right-mirrored and registered) sub-volume from the
contra-lateral hemisphere. The model was trained using
batch-size 8 and Adam optimiser for 30 epochs after
which validation loss, calculated on a separate set of ten
CTA-SI volumes, stopped improving. The network was
implemented using Keras library version 2.2.4 [12] and
Tensorflow version 1.12.0 [13]. A graphical representa-
tion of the CNN architecture is provided in Fig. 1.

Study design
The CNNs performance regarding anatomical accuracy
against expert segmentation was evaluated from follow-
up CT studies by ASPECTS anatomical regions visually,
i.e., did the CNN predicted lesions’ locations match the
final infarct locations within the ASPECTS regions in
the middle cerebral artery territory. ASPECTS is a well-
established method for quantitative topographic evalu-
ation of middle cerebral artery stroke. Individual regions
were labelled ‘positive’ or ‘negative’ for ischaemic
changes by a radiologist (L.H.), as determined by the
CNN from acute phase CTA-SI and by manual segmen-
tations from follow-up CT. The manual segmentations
were considered as ground truths. Confusion matrices,
sensitivity, specificity, and Sørensen–Dice similarity co-
efficient were then calculated from the regions’ true or
false labelling.
The CNNs performance was compared against a com-

mercial software (CTP-RAPID) that derives the infarct
core volume from CTP, as this is a validated and widely
used method for treatment selection. For this compari-
son, the effect of two clinically relevant time windows
(from symptom onset to start of imaging protocol) on
CNN output accuracy was tested.
Only lesions in the affected cerebral hemisphere de-

tected by the CNN were selected for the volumetric ana-
lysis with a volume threshold > 0.1 mL and a CNN
output (probability) threshold ≥ 0.5 for lesion inclusion.
False positive lesions in the contralateral hemisphere or
posterior fossa were discarded from the analysis. This
approach was chosen because in anterior circulation AIS
the affected hemisphere can usually be deducted from
clinical presentation. A visual and volumetric analysis of
false positive lesions in the contralateral hemisphere and
posterior fossa that were discarded from the volumetric
analysis was performed with the same lesion inclusion
thresholds indicated above.

Statistical analysis
Linear regression models between the CNN-derived vol-
ume outputs, manually segmented final infarct volumes
and CTP-RAPID ischaemic core volumes (defined by rela-
tive cerebral blood flow (CBF) < 30%) were calculated.
Pearson correlation coefficients (r) were calculated to evalu-
ate the correlation of CNN- and CTP-RAPID-derived vol-
umes against final infarct volumes and CNN-derived
volumes to CTP-RAPID core volumes. Confidence intervals
(CI) for the r values were calculated using the bootstrap
method by repeating resampling with replacement 105

times. Bland-Altman plots of agreement between infarct
volume estimates and final infarct volumes and between
CNN- and CTP-RAPID-derived estimates were also calcu-
lated. The calculations were performed using MATLAB
version 2018b (MathWorks, Natick, MA, USA).

Table 1 Patient characteristics

Number of patients 83

Age (years), mean (SD, range) 68.7 (11.6, 41–92)

Male sex, number (%) 49 (59)

Time from symptom onset to start CT

< 9 hours 57

> 9 hours 26

Intravenous thrombolysis, number (%) 37 (45)

Infarct lesion volumes (mL), mean (SD, range)

CNN output 36 (48, 0–241)

CTP-RAPID infarct core (CBF < 30%) 23 (36, 0–170)

Final infarct volume 52 (67, 1–301)

CT Computed tomography, CNN Convolutional neural network, CTP CT
perfusion, CBF Cerebral blood flow, SD Standard deviation
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Results
A representation of the CNN output with manual seg-
mentation and corresponding CTP-RAPID output is
shown in Fig. 2.
ASPECTS regions were used to evaluate the anatom-

ical accuracy of the CNN against expert segmentations
of final infarct volumes. A total of 830 regions were eval-
uated. The CNN outputs had a sensitivity of 0.71, a spe-
cificity of 0.87 and an accuracy of 0.80. The Sørensen–
Dice similarity coefficient was 0.73. The patient-wise
median (IQR) for accuracy was 0.8 (0.7–0.9), and for the
Sørensen–Dice similarity coefficient 0.67 (0.40–0.89). A
representation of true negatives, true positives, false neg-
atives and false positives by ASPECTS regions can be
found in Fig. 3.
Lesion volumes from CNN outputs and manual seg-

mentations of final infarcts were calculated from all le-
sions in the affected cerebral hemisphere. CTP-RAPID
ischaemic core estimations were reported as calculated
by the software. The infarct lesion volumes shown in
Table 1 ranged from 0–241 (mean 36, SD 48) mL in the
CNN outputs and from 1–301 (mean 52, SD 67) mL in
the manual segmentations. The reported CTP-RAPID is-
chaemic core volumes, as defined by CBF < 30%, ranged
from 0–170 (mean 23, SD 36) mL.
A correlation of r = 0.83 (95% CI 0.71–0.91) was found

between CNN outputs and manual segmentations of
final infarct volumes when all patients were included in
the statistical analysis (Fig. 4). The corresponding Bland-
Altman plot is shown in Fig. 5 with a mean volume dif-
ference of -16.3 (95% limits of agreement -115.0–69.6)
mL. A correlation was also found in a subgroup analysis
of 57 patients that presented less than 9 h of symptom
onset (r = 0.79, 95% CI 0.49–0.91), and in a subgroup of
26 patients that presented more than 9 h of symptom
onset (r = 0.90, 95% CI 0.85–0.96). CTP-RAPID ischaemic
core volumes and manual segmentations of final infarct
volumes were compared in all patients and a correlation
of r = 0.91 (95% CI 0.83–0.96) was found. CTP-RAPID
tended to underestimate the final infarct volumes (per lin-
ear regression, final infarct volume = 1.7 × CTP-RAPID
volume +14 mL). The corresponding Bland-Altman plot
is shown in Fig. 5 with a mean volume difference of -29.0
(95% limits of agreement -130.4–6.4) mL. The trend in

Fig. 1 The neural network architecture consisted of 40 three-
dimensional convolutional layers (conv) with valid padding and
exponential linear unit activation. Skip-connections (curved arrows)
with concatenations (+) were used with appropriate cropping. These
were followed by two fully connected layers (1 × 1 × 1
convolutions, FC) with 50 and 2 output neurons, and rectified linear
unit and softmax activation, respectively. In the end, the predicted
patches were stitched together to produce a lesion segmentation of
the same size as the input
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final infarct volume estimation amongst patients who re-
ceived thrombolytic therapy was closer to ground truth
using the CNN (r = 0.83, 95% CI 0.25–0.96, slope 0.8)
than per CTP-RAPID (r = 0.89, 95% CI 0.44–0.97, slope
1.7) as shown in Fig. 6. On average, the CNN-estimated
volumes matched more closely to the final infarct volumes
in this subgroup (mean volume difference -0.5 mL for
CNN and -17 mL for CTP-RAPID), and the overall abso-
lute differences were of the same order (19 and 20 mL, re-
spectively). In this subgroup, 89% of the patients had a
predicted volume within 25 mL of the actual follow-up
volume with the CNN and 73% with CTP-RAPID. An ex-
cellent correlation with final infarct volumes was found in
patients who did not receive thrombolytic therapy, with r
= 0.89 (95% CI 0.80–0.95) and r = 0.92 (95% CI 0.83–

0.97) for the CNN outputs and the CTP-RAPID estimates,
respectively.
To assess the clinical usefulness of our method, the

CNN outputs were compared to CTP-RAPID ischaemic
core volumes as shown in Fig. 7 and a good correlation
was found (r = 0.89, 95% CI 0.82-0.94). The correspond-
ing Bland-Altman plot is shown in Fig. 5 with a mean
volume difference of -12.7 (95% limits of agreement
-81.8–18.5) mL. In a subgroup analysis using the < 9 h
time window, a good correlation was found with a ten-
dency of the CNN to overestimate core volumes com-
pared to CTP-RAPID (r = 0.90, 95% CI 0.74–0.96; CTP-
RAPID volume = 0.6 × CNN volume -1.7 mL). A large
proportion of the study population had a final infarct
volume of < 50 mL and a correlation of r = 0.64 (95% CI

Fig. 2 A large infarct correctly detected by the convolutional neural network (CNN). The CNN prediction included the final infarct (blue outline)
and a part of the penumbra. Representative slices of the CNN predictions (a, b) with corresponding computed tomography perfusion RAPID
(CTP-RAPID) report for comparison (c). The purple-orange-yellow colourmap depicts CNN output probability. Reported volumes: CTP-RAPID
ischaemic core 83 mL, CNN 150 mL, and final infarct 150 mL
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0.30–0.86) was found between the CNN and CTP-RAPI
D in this group.
Three out of 57 patients in the < 9 h time window

were misclassified as not being candidates for thrombo-
lytic therapy according to reported infarct volume, as
their CNN reported infarct volumes were greater than
70 mL, with the CTP-RAPID reported ischaemic core
being less than 70 mL. No patients were misclassified as
having an infarct volume of less than 70 mL when CTP-
RAPID classified them in the > 70 mL infarct core group
(n = 10). This led to an overall sensitivity of 1.00 and
specificity of 0.94 for classifying patient eligibility for
thrombolytic therapy.
Amongst all 83 patients, a total of 37 (45%) patients

had false positive lesions detected by the CNN. False
positive lesions in the contralateral cerebral hemisphere
were detected in 28 patients, in the posterior fossa in 21
patients and 12 patients had false positive lesions in both

areas. There were a total of 71 false positive lesions, and
the median size was 1.2 mL (IQR 0.6–2.9 mL, range
0.1–20.9 mL). If only lesions with a volume of > 3mL
were included as per CTP-RAPID convention, the num-
ber of patients with false positive lesions was reduced to
14 (17%), although this would also result in the exclu-
sion of eight true lesions correctly detected by the CNN.
In a visual analysis, we found that 29 false positive le-
sions were the result of beam hardening artefacts in the
frontal, middle and posterior fossa. In 33 cases, no clear
abnormality could be detected by the human eye in the
areas marked by the CNN. A representation of typical
false positive lesions is provided in Fig. 8.

Discussion
In the present study, we report a good correlation between
CNN outputs and manually segmented final infarct vol-
umes from follow-up CT images. The correlation was

Fig. 3 Confusion matrices for the convolutional neural network (CNN) detections by the ten individual Alberta Stroke Programme Early CT Score
(ASPECTS) regions (M1–6, C, IC, L, and I) for 83 patients. The total sums from the left and right hemispheres (whichever was the infarcted side)
were combined for true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
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better in a subgroup that presented more than 9 h after
symptom onset, as opposed to a subgroup presenting less
than 9 h of symptom onset. This may partly be due to the
more even distribution of lesion volumes in the > 9 h sub-
group, whereas the < 9 h subgroup had a larger propor-
tion of small lesions. It is also possible that the longer
delay from the onset of symptoms to imaging may have
led to irreversible ischaemic brain tissue hypoattenuation

that is not as strongly affected by circulatory conditions,
e.g., iodine concentration in CTA-SI as may be in the earl-
ier time window.
ischaemic lesions delineated in CTA-SI have been

shown to correlate with infarct core as shown in
diffusion-weighted imaging [14, 15], which is regarded
as the gold standard. However, these studies have been
conducted with previous generation scanners and a

Fig. 4 Infarct lesion volume correlation between convolutional neural network (CNN) predictions based on acute phase computed tomography
angiography (CTA) and final infarct volumes. All patients (a). Patients imaged more than 9 h after symptom onset (b)

Fig. 5 Bland-Altman plots of agreement between lesion volume estimates. Convolutional neural network (CNN) predictions based on acute
phase computed tomography angiography (CTA) and final infarct volumes (a), computed tomography perfusion RAPID (CTP-RAPID) ischaemic
core (cerebral blood flow, CBF < 30%), and final infarct volumes (b) and CTP-RAPID and CNN (c)
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Fig. 6 Infarct lesion volume correlation in patients treated with intravenous thrombolysis. Convolutional neural network (CNN) predictions versus
final infarct volumes (a). Computed tomography perfusion RAPID (CTP-RAPID) ischaemic core versus final infarct volumes (b)

Fig. 7 Infarct lesion volume correlation between convolutional neural network (CNN) predictions and computed tomography perfusion RAPID
(CTP-RAPID) ischaemic core (cerebral blood flow, CBF < 30%). All cases (a). Patients with final infarct volume less than 50 mL (b)
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number of more recent studies have postulated that
modern CT-scanners with rapid image acquisition, faster
contrast-injection rates of 5–7 mL/s and short prep-
delay times of 15–20 s may lead to CTA being more
CBF than cerebral blood volume weighted, resulting in
overestimation of the infarct core [16–19]. This has been
attributed to the brain tissue not reaching a steady-state in
contrast opacification before image acquisition. Our study
is in line with these findings in that we found a tendency
for the CNN to overestimate infarct volumes compared to
the CTP-RAPID core volumes as shown in Fig. 7, whilst
the overall correlation was good. On the other hand, our
CNN tended to underestimate infarct sizes when com-
pared to final infarct volumes in patients who did not re-
ceive thrombolytic therapy. This may owe to infarct
growth in situations where recanalisation does not happen
and also to ischaemia-related oedema, which reaches its

peak at one to several days after the onset of ischaemia as
tissue water content increases [20–22]. In keeping with
previous studies, a tendency to overestimate final infarct
volumes was found in a subgroup of patients treated with
thrombolytic therapy, suggesting that CTA also reflects
penumbral tissue to an extent.
The CNN seemed not to be able to detect ischaemic

lesions in the caudate nucleus and in the basal ganglia
area generally (Fig. 3), which may be due to the small
initial training set. Also, the CNN usually did not detect
ischaemic lesions in the most peripheral zone of the
cerebral hemispheres, including the cortical grey matter.
This is usually an area of the brain most opacified by
contrast material and would be expected to express is-
chaemic hypoattenuation better than white matter,
where attenuation differences between normal and is-
chaemic brain may be as low as 3–4 Hounsfield units

Fig. 8 Representative cases of false positive lesions. A lesion caused by beam hardening artefact in the posterior fossa (a). A false positive lesion
for which no clear radiologic correlation could be found (b)

Hokkinen et al. European Radiology Experimental            (2021) 5:25 Page 9 of 11



and obscured by image noise [23]. This phenomenon
might be explained by the location near hyperdense cal-
varia and partly by ischaemia-related oedema changing
the anatomical relationships and thus hindering the per-
formance of rigid registration between the CTA and the
follow-up CT images. Somewhat surprisingly, the CNN
seemed to be relatively insensitive to chronic white mat-
ter hypointensities or chronic parenchymal defects, as
only 9 false positive lesions were attributed to chronic
white matter hypointensities due to vascular degener-
ation or to chronic infarcts.
Although a stronger correlation was found amongst all

patients between CTP-RAPID and final infarct volumes
than with CNN outputs and final infarct volumes, the
CNN still had good correlation with final infarct vol-
umes (r = 0.83) and also with CTP-RAPID core volumes
(r = 0.89). A previous study reported that their CNN
prediction probabilities from CTA images corresponded
with CTP-RAPID ischaemic core volumes with r = 0.7
[8]. As opposed to our study, they trained their algo-
rithm against dichotomised CTP-RAPID determinations
of ischaemic core without comparing the CNN outputs
to follow-up imaging, only to CTP-RAPID at presenta-
tion. Their study design included a patient population
balanced to contain comparable numbers of patients
with small, moderate and large-sized ischaemic cores at
presentation whereas we selected consecutive patients
resulting in a large number of smaller ischaemic cores,
which is a confounding factor in the statistical analysis
of our results. The results of these studies suggest that a
CTA-based CNN method could be helpful in treatment
selection using the clinical-imaging mismatch approach
[24].
We tested the clinical relevance of our method by

comparing the CNN outputs to CTP-RAPID core vol-
umes and found a good correlation between the two
with a tendency of the CNN to overestimate core vol-
umes compared to CTP-RAPID. Three out of 57 pa-
tients in the < 9-h time window with CTP-RAPID
volume < 70 mL were misclassified as not being candi-
dates for thrombolytic therapy, so the overall specificity
was 0.94 for classifying patient eligibility for thrombo-
lytic therapy. However, the trend in final infarct volume
estimation amongst patients who received thrombolytic
therapy was closer to ground truth per the CNN than
per CTP-RAPID. This may be due to the fundamental
differences in these two methods, i.e., CTP-RAPID esti-
mating volumes based on circulation and complex algo-
rithms, whereas CTA estimates of infarct core are based
on brain tissue hypoattenuation. Because ischaemic
hypoattenuation on CTA has been found to include
some penumbra as discussed above, the uncertain and
possibly incomplete and slower recanalisation (as com-
pared to endovascular thrombectomy) achieved with i.v.

thrombolysis may be reflected in the results. However,
the evolution of an infarct is known to be a complex
matter and there are numerous variables affecting the
final outcome, which are beyond the scope of this text
[22]. CTP-based core estimation methods also have their
own inherent weaknesses and it has been questioned
whether CTP should be used to make treatment deci-
sions in individual patients [25]. Furthermore, in our
series, six out of the initial patient cohort of 91 had a
technically unsuccessful CTP but a successful CTA.
Although the mean volume difference between CNN

outputs and final infarct volumes was smaller than be-
tween CTP-RAPID and final infarct volumes, the 95%
limits of agreement were broad with both methods. Pre-
viously, the CTP-based method of treatment selection
has been questioned in individual patients for its high
variability in core volume estimation between subjects
[25]. In larger study populations, however, the average
performance justifies its use [3]. A similarly high vari-
ability was also found in our study. Based on the Bland-
Altman plots in Fig. 5, the performance of our CNN
method is similar to the CTP-based RAPID in this re-
gard. This should be taken into account in possible clin-
ical use, as there is a possibility of under or
overestimating the core volume, which may in turn
affect treatment selection.
Limitations of the present study include its single-

centre retrospective design and a limited sample size,
which is especially apparent in the subgroup analyses.
Also, the majority of the CTA studies were performed
using the same scanner, which limits the generalisability
of the results across different centres and scanners. The
small size of the initial CNN training data set (n = 30)
can also be considered a limitation. Finally, a follow-up
CT was used for segmentation of final infarct volumes.
A follow-up study using diffusion-weighted imaging
would have been more accurate, but CT is routinely
used for follow-up in our institution for several reasons,
including costs and patient tolerance.
In conclusion, our study showed that a CTA-based

CNN model can detect anterior circulation acute ischae-
mic lesions and provide good estimates for infarct core
volumes.
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