236 research outputs found

    On-chip Phase Locked Loop (PLL) design for clock multiplier in CMOS Monolithic Active Pixel Sensors (MAPS)

    Get PDF
    In a detector system, clock distribution to sensors must be controlled at a level allowing proper synchronisation. In order to reach theses requirements for the HFT (Heavy Flavor Tracker) upgrade at STAR (Solenoidal Tracker at RHIC), we have proposed to distribute a low frequency clock at 10 MHz which will be multiplied to 160 MHz in each sensor by a PLL. A PLL has been designed for period jitter less than 20 ps rms, low power consumption and manufactured in a 0.35 μm CMOS process

    Lipreading and Covert Speech Production Similarly Modulate Human Auditory-Cortex Responses to Pure Tones

    Get PDF
    Watching the lips of a speaker enhances speech perception. At the same time, the 100 ms response to speech sounds is suppressed in the observer's auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50 ms tones spanning six octaves (125–8000 Hz) (1) during “lipreading,” i.e., when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, and /y/, and reacted to vowels presented twice in a row; (2) during a visual control task; (3) during a still-face passive control condition; and (4) in a separate experiment with a subset of nine subjects, during covert production of the same vowels. Auditory-cortex 100 ms responses (N100m) were equally suppressed in the lipreading and covert-speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading.Peer reviewe

    Mental Action Simulation Synchronizes Action-Observation Circuits across Individuals

    Get PDF
    A frontoparietal action–observation network (AON) has been proposed to support understanding others' actions and goals. We show that the AON "ticks together" in human subjects who are sharing a third person's feelings. During functional magnetic resonance imaging, 20 volunteers watched movies depicting boxing matches passively or while simulating a prespecified boxer's feelings. Instantaneous intersubject phase synchronization (ISPS) was computed to derive multisubject voxelwise similarity of hemodynamic activity and inter-area functional connectivity. During passive viewing, subjects' brain activity was synchronized in sensory projection and posterior temporal cortices. Simulation induced widespread increase of ISPS in the AON (premotor, posterior parietal, and superior temporal cortices), primary and secondary somatosensory cortices, and the dorsal attention circuits (frontal eye fields, intraparietal sulcus). Moreover, interconnectivity of these regions strengthened during simulation. We propose that sharing a third person's feelings synchronizes the observer's own brain mechanisms supporting sensations and motor planning, thereby likely promoting mutual understanding.Peer reviewe

    Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels

    Full text link
    CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mra

    Predictors of long-term change in adult cognitive performance: systematic review and data from the Northern Finland Birth Cohort 1966

    No full text
    Objective: Several social life events and challenges have an impact on cognitive development. Our goal was to analyze the predictors of change in cognitive performance in early midlife in a general population sample. Additionally, systematic literature review was performed. Method: The study sample was drawn from the Northern Finland Birth Cohort 1966 at the ages of 34 and 43 years. Primary school performance, sociodemographic factors and body mass index (BMI) were used to predict change in cognitive performance measured by the California Verbal Learning Test, Visual Object Learning Test, and Abstraction Inhibition and Working Memory task. Analyses were weighted by gender and education, and p-values were corrected for multiple comparisons using Benjamini–Hochberg procedure (B–H). Results: Male gender predicted decrease in episodic memory. Poor school marks of practical subjects, having no children, and increase in BMI were associated with decrease in episodic memory, though non-significantly after B–H. Better school marks, and higher occupational class were associated with preserved performance in visual object learning. Higher vocational education predicted preserved performance in visual object learning test, though non-significantly after B-H. Likewise, having children predicted decreased performance in executive functioning but non-significantly after B-H. Conclusions: Adolescent cognitive ability, change in BMI and several sociodemographic factors appear to predict cognitive changes in early midlife. The key advantage of present study is the exploration of possible predictors of change in cognitive performance among general population in the early midlife, a developmental period that has been earlier overlooked

    Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Get PDF
    Respirable antisense oligonucleotides (RASONs), which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery

    Effect of Incoherent Illumination on Two-Beam Interaction of Light Waves in a Bismuth Titanate Crystal

    Get PDF
    Experimental investigations and theoretical analysis of the effect of external illumination on the dynamics of formation of photorefractive reflection gratings in a (100)-cut bismuth titanate crystal showed that, in the case of counter interaction of laser beams with a wavelength of 633 nm, incoherent green light may cause a change in the sign of the two-beam gain

    A vertex detector for the International Linear Collider based on CMOS sensors

    Get PDF
    The physics programme at the International Linear Collider (ILC) calls for a vertex detector (VD) providing unprecedented flavour tagging performances, especially for c-quarks and τ leptons. This requirement makes a very granular, thin and multi-layer VD installed very close to the interaction region mandatory. Additional constraints, mainly on read-out speed and radiation tolerance, originate from the beam background, which governs the occupancy and the radiation level the detector should be able to cope with. CMOS sensors are being developed to fulfil these requirements. This report addresses the ILC requirements (highly related to beamstrahlung), the main advantages and features of CMOS sensors, the demonstrated performances and the specific aspects of a VD based on this technology. The status of the main R&D directions (radiation tolerance, thinning procedure and read-out speed) are also presented

    CMOS pixel sensor development: a fast read-out architecture with integrated zero suppression

    Get PDF
    International audienceCMOS Monolithic Active Pixel Sensors (MAPS) have demonstrated their strong potential for tracking devices, particularly for flavour tagging. They are foreseen to equip several vertex detectors and beam telescopes. Most applications require high read-out speed, which imposes sensors to feature digital output with integrated zero suppression. The most recent development of MAPS at IPHC and IRFU addressing this issue will be reviewed. The design architecture, combining pixel array, column-level discriminators and zero suppression circuits, will be presented. Each pixel features a preamplifier and a correlated double sampling (CDS) micro-circuit reducing the temporal and fixed pattern noises. The sensor is fully programmable and can be monitored. It will equip experimental apparatus starting data taking in 2009/2010
    corecore