17,883 research outputs found

    Integrability of one degree of freedom symplectic maps with polar singularities

    Full text link
    In this paper, we treat symplectic difference equations with one degree of freedom. For such cases, we resolve the relation between that the dynamics on the two dimensional phase space is reduced to on one dimensional level sets by a conserved quantity and that the dynamics is integrable, under some assumptions. The process which we introduce is related to interval exchange transformations.Comment: 10 pages, 2 figure

    Selective decay by Casimir dissipation in fluids

    Full text link
    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in \cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies

    Link Invariants for Flows in Higher Dimensions

    Full text link
    Linking numbers in higher dimensions and their generalization including gauge fields are studied in the context of BF theories. The linking numbers associated to nn-manifolds with smooth flows generated by divergence-free p-vector fields, endowed with an invariant flow measure are computed in different cases. They constitute invariants of smooth dynamical systems (for non-singular flows) and generalizes previous results for the 3-dimensional case. In particular, they generalizes to higher dimensions the Arnold's asymptotic Hopf invariant for the three-dimensional case. This invariant is generalized by a twisting with a non-abelian gauge connection. The computation of the asymptotic Jones-Witten invariants for flows is naturally extended to dimension n=2p+1. Finally we give a possible interpretation and implementation of these issues in the context of string theory.Comment: 21+1 pages, LaTeX, no figure

    Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer

    Full text link
    We investigate an NN-particle Bose-Hubbard dimer with an additional effective decay term in one of the sites. A mean-field approximation for this non-Hermitian many-particle system is derived, based on a coherent state approximation. The resulting nonlinear, non-Hermitian two-level dynamics, in particular the fixed point structures showing characteristic modifications of the self-trapping transition, are analyzed. The mean-field dynamics is found to be in reasonable agreement with the full many-particle evolution.Comment: 4 pages, 3 figures, published versio

    Dynamical stability of a doubly quantized vortex in a three-dimensional condensate

    Full text link
    The Bogoliubov equations are solved for a three-dimensional Bose-Einstein condensate containing a doubly quantized vortex, trapped in a harmonic potential. Complex frequencies, signifying dynamical instability, are found for certain ranges of parameter values. The existence of alternating windows of stability and instability, respectively, is explained qualitatively and quantitatively using variational calculus and direct numerical solution. It is seen that the windows of stability are much smaller for a cigar shaped condensate than for a pancake shaped one, which is consistent with the findings of recent experiments.Comment: 23 pages, 11 figure

    Poincar\'e recurrence theorem and the strong CP-problem

    Get PDF
    The existence in the physical QCD vacuum of nonzero gluon condensates, such as , requires dominance of gluon fields with finite mean action density. This naturally allows any real number value for the unit ``topological charge'' qq characterising the fields approximating the gluon configurations which should dominate the QCD partition function. If qq is an irrational number then the critical values of the θ\theta parameter for which CP is spontaneously broken are dense in R\mathbb{R}, which provides for a mechanism of resolving the strong CP problem simultaneously with a correct implementation of UA(1)U_{\rm A}(1) symmetry. We present an explicit realisation of this mechanism within a QCD motivated domain model. Some model independent arguments are given that suggest the relevance of this mechanism also to genuine QCD.Comment: 8 pages, RevTeX, 3 figures. Revised after referee suggestions. Now includes model independent argument

    Pseudo-boundaries in discontinuous 2-dimensional maps

    Full text link
    It is known that Kolmogorov-Arnold-Moser boundaries appear in sufficiently smooth 2-dimensional area-preserving maps. When such boundaries are destroyed, they become pseudo-boundaries. We show that pseudo-boundaries can also be found in discontinuous maps. The origin of these pseudo-boundaries are groups of chains of islands which separate parts of the phase space and need to be crossed in order to move between the different sub-spaces. Trajectories, however, do not easily cross these chains, but tend to propagate along them. This type of behavior is demonstrated using a ``generalized'' Fermi map.Comment: 4 pages, 4 figures, Revtex, epsf, submitted to Physical Review E (as a brief report

    Spectral analysis and an area-preserving extension of a piecewise linear intermittent map

    Full text link
    We investigate spectral properties of a 1-dimensional piecewise linear intermittent map, which has not only a marginal fixed point but also a singular structure suppressing injections of the orbits into neighborhoods of the marginal fixed point. We explicitly derive generalized eigenvalues and eigenfunctions of the Frobenius--Perron operator of the map for classes of observables and piecewise constant initial densities, and it is found that the Frobenius--Perron operator has two simple real eigenvalues 1 and λd(1,0)\lambda_d \in (-1,0), and a continuous spectrum on the real line [0,1][0,1]. From these spectral properties, we also found that this system exhibits power law decay of correlations. This analytical result is found to be in a good agreement with numerical simulations. Moreover, the system can be extended to an area-preserving invertible map defined on the unit square. This extended system is similar to the baker transformation, but does not satisfy hyperbolicity. A relation between this area-preserving map and a billiard system is also discussed.Comment: 12 pages, 3 figure

    Anderson localization or nonlinear waves? A matter of probability

    Full text link
    In linear disordered systems Anderson localization makes any wave packet stay localized for all times. Its fate in nonlinear disordered systems is under intense theoretical debate and experimental study. We resolve this dispute showing that at any small but finite nonlinearity (energy) value there is a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at fixed total energy. These results are generalized to higher dimensions as well.Comment: 4 pages, 3 figure

    Surface chemistry of selected lunar regions

    Get PDF
    A completely new analysis has been carried out on the data from the Apollo 15 and 16 gamma ray spectrometer experiments. The components of the continuum background have been estimated. The elements Th, K, Fe and Mg give useful results; results for Ti are significant only for a few high Ti regions. Errors are given, and the results are checked by other methods. Concentrations are reported for about sixty lunar regions; the ground track has been subdivided in various ways. The borders of the maria seem well-defined chemically, while the distribution of KREEP is broad. This wide distribution requires emplacement of KREEP before the era of mare formation. Its high concentration in western mare soils seems to require major vertical mixing
    corecore