16 research outputs found

    Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    Get PDF
    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates

    Practice patterns analysis of ocular proton therapy centers the international OPTIC survey

    No full text
    PURPOSE To assess the planning, treatment, and follow up strategies worldwide in dedicated proton therapy ocular programs. METHODS AND MATERIALS Ten centers from 7 countries completed a questionnaire survey with 109 queries on the eye treatment planning system TPS , hardware software equipment, image acquisition registration, patient positioning, eye surveillance, beam delivery, quality assurance QA , clinical management, and workflow. RESULTS Worldwide, 28,891 eye patients were treated with protons at the 10 centers as of the end of 2014. Most centers treated a vast number of ocular patients 1729 to 6369 . Three centers treated fewer than 200 ocular patients. Most commonly, the centers treated uveal melanoma UM and other primary ocular malignancies, benign ocular tumors, conjunctival lesions, choroidal metastases, and retinoblastomas. The UM dose fractionation was generally within a standard range, whereas dosing for other ocular conditions was not standardized. The majority 80 of centers used in common a specific ocular TPS. Variability existed in imaging registration, with magnetic resonance imaging MRI rarely being used in routine planning 20 . Increased patient to full time equivalent ratios were observed by higher accruing centers P .0161 . Generally, ophthalmologists followed up the post radiation therapy patients, though in 40 of centers radiation oncologists also followed up the patients. Seven centers had a prospective outcomes database. All centers used a cyclotron to accelerate protons with dedicated horizontal beam lines only. QA checks range, modulation varied substantially across centers. CONCLUSIONS The first worldwide multi institutional ophthalmic proton therapy survey of the clinical and technical approach shows areas of substantial overlap and areas of progress needed to achieve sustainable and systematic management. Future international efforts include research and development for imaging and planning software upgrades, increased use of MRI, development of clinical protocols, systematic patient centered data acquisition, and publishing guidelines on QA, staffing, treatment, and follow up parameters by dedicated ocular programs to ensure the highest level of care for ocular patient

    ABCG2 impairs the activity of the aurora kinase inhibitor tozasertib but not of alisertib.

    Get PDF
    BACKGROUND Recently, we have shown that the ATP-binding cassette (ABC) transporter ABCB1 interferes with the anti-cancer activity of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) but not of the aurora kinase A and B inhibitor alisertib (MLN8237). Preliminary data had suggested tozasertib also to be a substrate of the ABC transporter ABCG2, another ABC transporter potentially involved in cancer cell drug resistance. Here, we studied the effect of ABCG2 on the activity of tozasertib and alisertib. RESULTS The tozasertib concentration that reduces cell viability by 50 % (IC50) was dramatically increased in ABCG2-transduced UKF-NB-3(ABCG2) cells (48.8-fold) compared to UKF-NB-3 cells and vector-transduced control cells. The ABCG2 inhibitor WK-X-34 reduced tozasertib IC50 to the level of non-ABCG2-expressing UKF-NB-3 cells. Furthermore, ABCG2 depletion from UKF-NB-3(ABCG2) cells using another lentiviral vector expressing an shRNA against the bicistronic mRNA of ABCG2 and eGFP largely re-sensitised these cells to tozasertib. In contrast, alisertib activity was not affected by ABCG2 expression. CONCLUSIONS Tozasertib but not alisertib activity is affected by ABCG2 expression. This should be considered within the design and analysis of experiments and clinical trials investigating these compounds

    Aurora kinases as targets in drug-resistant neuroblastoma cells

    No full text
    Aurora kinase inhibitors displayed activity in pre-clinical neuroblastoma models. Here, we studied the effects of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) and the aurora kinase inhibitor alisertib (MLN8237) that shows some specificity for aurora kinase A over aurora kinase B in a panel of neuroblastoma cell lines with acquired drug resistance. Both compounds displayed anti-neuroblastoma activity in the nanomolar range. The anti-neuroblastoma mechanism included inhibition of aurora kinase signalling as indicated by decreased phosphorylation of the aurora kinase substrate histone H3, cell cycle inhibition in G2/M phase, and induction of apoptosis. The activity of alisertib but not of tozasertib was affected by ABCB1 expression. Aurora kinase inhibitors induced a p53 response and their activity was enhanced in combination with the MDM2 inhibitor and p53 activator nutlin-3 in p53 wild-type cells. In conclusion, aurora kinases are potential drug targets in therapy-refractory neuroblastoma, in particular for the vast majority of p53 wild-type cases
    corecore