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SHORT REPORT

ABCG2 impairs the activity of the aurora 
kinase inhibitor tozasertib but not of alisertib
Martin Michaelis1,2†, Florian Selt1,4†, Florian Rothweiler1, Michael Wiese3 and Jindrich Cinatl Jr.1*

Abstract 

Background: Recently, we have shown that the ATP-binding cassette (ABC) transporter ABCB1 interferes with the 
anti-cancer activity of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) but not of the aurora kinase A and 
B inhibitor alisertib (MLN8237). Preliminary data had suggested tozasertib also to be a substrate of the ABC trans-
porter ABCG2, another ABC transporter potentially involved in cancer cell drug resistance. Here, we studied the effect 
of ABCG2 on the activity of tozasertib and alisertib.

Results: The tozasertib concentration that reduces cell viability by 50 % (IC50) was dramatically increased in ABCG2-
transduced UKF-NB-3ABCG2 cells (48.8-fold) compared to UKF-NB-3 cells and vector-transduced control cells. The 
ABCG2 inhibitor WK-X-34 reduced tozasertib IC50 to the level of non-ABCG2-expressing UKF-NB-3 cells. Furthermore, 
ABCG2 depletion from UKF-NB-3ABCG2 cells using another lentiviral vector expressing an shRNA against the bicistronic 
mRNA of ABCG2 and eGFP largely re-sensitised these cells to tozasertib. In contrast, alisertib activity was not affected 
by ABCG2 expression.

Conclusions: Tozasertib but not alisertib activity is affected by ABCG2 expression. This should be considered within 
the design and analysis of experiments and clinical trials investigating these compounds.
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Background
The aurora kinases A, B, and C are involved in spindle 
apparatus organisation during cell division [1, 2]. Inhibi-
tors of aurora kinases represent a novel class of anti-
cancer drugs currently under pre-clinical and clinical 
investigation [1–5]. Aurora kinases have been suggested 
to be potential drug targets in neuroblastoma [6–15], 
the most frequent extracranial solid childhood tumour. 
About half of neuroblastoma patients suffer from high-
risk disease associated with overall survival rates below 
50 % despite intensive therapy [16, 17].

Recently, we showed that aurora kinases may represent 
targets in therapy-refractory neuroblastoma. In particu-
lar, p53 wild-type neuroblastoma cells were sensitive 
to aurora kinase inhibitors [15]. Notably, only a small 

fraction of neuroblastomas harbours p53-mutant cells 
[18, 19]. In addition, we confirmed previous assumptions 
that ABCB1 expression confers resistance to the pan-
aurora kinase inhibitor tozasertib (VX680, MK-0457) 
[15, 20, 21]. In contrast, the activity of the aurora kinase 
A and B inhibitor alisertib (MLN8237) was not affected 
by the presence of ABCB1 (also known as P-glycoprotein 
or MDR1) [15]. Tozasertib was suggested to also interfere 
with ABCG2 (also known as BCRP) [20], another ATP-
binding cassette (ABC) transporter known to be involved 
in cancer cell drug resistance [22], but conclusive experi-
mental evidence has been missing. Moreover, there is no 
information on a possible interaction of alisertib with 
ABCG2 available in the public domain. Thus, we here 
investigated the effects of ABCG2 expression on the anti-
cancer effects of tozasertib and alisertib.

Methods
Drugs
Tozasertib and alisertib were purchased from Selleck 
Chemicals (Houston, TX, USA), mitoxantrone from 
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Gry-Pharma GmbH (Kirchzarten, Germany). WK-X-34 
was synthesised as described before [23].

Cells
The MYCN-amplified, ABCB1-negative neuroblas-
toma cell line UKF-NB-3 was derived from a bone mar-
row metastasis of a stage IV neuroblastoma patient [24] 
and propagated in IMDM supplemented with 10 % FBS, 
100  IU/ml penicillin and 100  mg/ml streptomycin at 
37  °C. Cells were routinely tested for mycoplasma con-
tamination and authenticated by short tandem repeat 
profiling. Cells showing high expression of ABCG2 were 
established as described previously [25, 26] using the len-
tiviral gene ontology (LeGO) vector technology [27, 28] 
(http://www.LentiGO-Vectors.de).

Viability assay
Cell viability was tested by the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye 
reduction assay after 120  h incubation modified as 
described previously [29].

ABCG2 depletion in UKF‑NB‑3ABCG2 cells
The LeGO-iG2 vector that we used for the expression 
of ABCG2 (LeGO-iG2-ABCG2) is a bicistronic vector 
with an internal ribosome entry site (IRES) that links 
the expression of the fluorescent marker gene to the 
expression of another gene of interest (here ABCG2) 
[25–29]. Previously, it was shown that the expression 
of genes from this bicistronic vector can be depleted by 
the use of a second vector encoding an shRNA against 
eGFP [27]. Here, we cloned the eGFP-shRNA (GCAC-
GACTTCTTCAAGTCC [27]) into the LeGO-X vector 
that uses dsRedExpress (orange emission, 584  nm) as 
marker [27] (http://www.LentiGo-Vectors.de) resulting 
in the vector LeGO-X-GFP2.

Flow cytometry
An antibody directed against ABCG2 (Kamiya Biomedi-
cal Company, Seattle, WA, USA), followed by secondary 
antibody labelled with Phycoerythrin (R&D, Wiesbaden, 
Germany) was used to detect protein expression by flow 
cytometry (FACSCanto, BD Biosciences, Heidelberg, 
Germany).

Statistics
Results are expressed as mean  ±  SD of at least three 
experiments. Comparisons between two groups were 
performed using Student’s t test. Three and more groups 
were compared by ANOVA followed by the Student–
Newman–Keuls test. P values lower than 0.05 were con-
sidered to be significant.

Results
Effects of tozasertib and alisertib on the viability 
of ABCG2‑expressing cells
The concentration that reduces cell viability by 50  % 
(IC50) was dramatically increased in ABCG2-trans-
duced UKF-NB-3ABCG2 cells for tozasertib (48.8-fold) 
and mitoxantrone (a cytotoxic ABCG2 substrate that 
was used as control, 296.5-fold) (Fig. 1; Additional file 1: 
Table S1). In the presence of the ABCG2 inhibitor WK-X-
34, the tozasertib and mitoxantrone IC50 values were 
reduced to the level of non-ABCG2-expressing UKF-
NB-3 cells (Fig. 1; Additional file 1: Table S1). In contrast, 
alisertib activity was not affected by ABCG2 expression 
(Fig. 1; Additional file 1: Table S1).

Effects of ABCG2 depletion on tozasertib efficacy
In order to deplete ABCG2 from UKF-NB-3ABCG2 cells, 
we additionally transduced these cells with the LeGO-X-
GFP2 vector encoding an shRNA directed against eGFP. 
Fluorescence microscopy indicated effective reduction 

drug plus WK-X-34 (2.5µM)

drug alone

IC50 tozasertib (nM)

UKF-NB-3

UKF-NB-3ABCG2 

UKF-NB-3iG2 

0 200 400

IC50 alisertib (nM)

UKF-NB-3

UKF-NB-3ABCG2 

UKF-NB-3iG2 

0 200 400

*

Fig. 1 Effects of tozasertib and alisertib on the viability of 
non-ABCG2-expressing UKF-NB-3 cells, UKF-NB-3 cells transduced 
with a lentiviral vector encoding for ABCG2 (UKF-NB-3ABCG2), or 
UKF-NB-3 cells transduced with a control vector (UKF-NB-3iG2) in 
the absence or presence of the ABCG2 inhibitor WK-X-34 (2.5 µM) as 
determined by MTT assay after 120 h of incubation. WK-X-34 (2.5 µM) 
alone did not affect cell viability (Additional file 1: Table S1). *P < 0.05 
relative to IC50 UKF-NB-3 in the absence of WK-X-34

http://www.LentiGO-Vectors.de
http://www.LentiGo-Vectors.de
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of eGFP protein levels in UKF-NB-3ABCG2-XGFP2 cells 
(Fig.  2a). Moreover, flow cytometric analysis demon-
strated decreased ABCG2 levels in UKF-NB-3ABCG2-XGFP2 
cells (Fig. 2b). In accordance with the results from the use 
of the ABCG2 inhibitor WK-X-34, UKF-NB-3ABCG2-XGFP2 
cells were re-sensitised to tozasertib and the cytotoxic 
ABCG2 substrate mitoxantrone (Fig. 3).

Discussion
Knowledge about the interaction of drug candidates with 
ABC transporters is important for their investigation and 
(pre-)clinical development because ABC transporters are 
expressed at organ and tissue barriers determining drug 
body distribution [30]. Moreover, ABCG2 expression 
may be involved in cancer cell drug resistance [22].

Previously, we had shown that the pan aurora kinase 
inhibitor tozasertib that is a frequently used tool com-
pound [with 128 articles in the Pubmed (http://www.
ncbi.nlm.nih.gov/pubmed) as of 19th August 2015] but 
not the aurora kinase A and B inhibitor alisertib that sub-
stantially differs in structure from tozasertib and is under 
investigation in multiple clinical trials ([3–5], 50 clinical 

studies of alisertib are registered at http://www.clinical-
trials.gov as of 19th August 2015) interferes with ABCB1-
mediated drug transport [15]. Here, we provide evidence 
that the efficacy of tozasertib is also affected by ABCG2 
expression. ABCG2 expression reduced cancer cell sen-
sitivity to tozasertib and the cytotoxic ABCG2 substrate 
mitoxantrone. Interference with ABCG2 using WK-X-34, 
an ABCG2 inhibitor, or RNAi-mediated ABCG2 deple-
tion resulted in re-sensitisation of ABCG2-expressing 
cells to tozasertib (and mitoxantrone). This is in concord-
ance with previous findings suggesting an interaction of 
tozasertib with ABCG2 [20] although conclusive experi-
mental evidence had been missing. Cancer cell lines 
adapted to the aurora kinase inhibitor AZD1152 had 
been shown to express high levels of ABCG2 and to be 
cross-resistant to tozasertib [20]. However, studies con-
firming that there is a functional relationship between 
high ABCG2 expression and decreased tozasertib sensi-
tivity had not been performed. Moreover, this is the first 
study that investigated a potential effect of ABCG2 on the 
activity of alisertib and provides evidence that ABCG2 
expression does not impair the efficacy of alisertib.

In conclusion, the differential effects of ABCG2 on 
tozasertib and alisertib activity should be carefully 
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Fig. 2 ABCG2 depletion using a second lentiviral vector (LeGO-X-
GFP2) with dsRedExpress as marker encoding an shRNA targeting 
the bicistronic ABCG2-IRES-eGFP mRNA of the first vector (LeGO-iG2-
ABCG2) thereby depleting eGFP and ABCG2 expression. a Fluo-
rescence pictures indicating dsRedExpress (encoded as marker by 
LeGO-X-GFP2) and eGFP fluorescence in UKF-NB-3 cells transduced 
with LeGO-iG2-ABCG2 (UKF-NB-3ABCG2) or LeGO-iG2-ABCG2 and 
LeGO-X-GFP2 (UKF-NB-3ABCG2-XGFP2). b ABCG2 levels in UKF-NB-3 cells, 
UKF-NB-3 cells transduced with the empty LeGO-iG2 vector (UKF-NB-
3iG2), UKF-NB-3ABCG2 cells, or UKF-NB-3ABCG2-XGFP2 cells as determined 
by flow cytometry and expressed as relative fluorescence units (rfu). 
*P < 0.05 relative to UKF-NB-3
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Fig. 3 Effects of ABCG2 depletion on UKF-NB-3ABCG2 cell sensitivity 
to tozasertib and the cytotoxic ABCG2 substrate mitoxantrone. Con-
centrations that reduce cell viability by 50 % after 120 h incubation 
(IC50) were determined by MTT assay in UKF-NB-3 cells, UKF-NB-3 
cells transduced with a control vector (UKF-NB-3iG2), UKF-NB-3 cells 
transduced with the lentiviral vector LeGO-iG2-ABCG2 encoding for 
ABCG2 (UKF-NB-3ABCG2), and UKF-NB-3ABCG2 cells in which ABCG2 
was depleted using a lentiviral vector encoding an shRNA directed 
against the mRNA of eGFP and ABCG2 (LeGO-X-GFP2) of the LeGO-
iG2-ABCG2 vector (UKF-NB-3ABCG2-XGFP2). *P < 0.05 relative to UKF-NB-3
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considered within the design and analysis of experiments 
and clinical trials investigating these compounds.

Availability of supporting data
The data sets supporting the results of this article are 
included within the article and its Additional file 1: Table 
S1.
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