3,725 research outputs found

    The Effect on Rudder Control of Slip Stream Body, and Ground Interference

    Get PDF
    This investigation was undertaken to determine the relative effects of those factors which may interfere with the rudder control of an airplane, with especial reference to the process of landing. It shows that ground interference is negligible, but that the effects of a large rounded body and of the slip stream may combine to interfere seriously with rudder control at low flying speeds and when taxiing

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    Postcard: No. 51. Chuck Wagon and Cook

    Get PDF
    This black and white photographic postcard features a chuck wagon, or covered wagon with the covering removed. The items in the wagon have been removed and are on the ground to set up camp. A man stands at the back of the wagon with his hand on a container for cooking. Prairie land surrounds the man and wagon. Printed text is at the top of the card. Handwriting is on the back of the card. (Note indicates the photo was taken by Liberal, Kansas photographer Hal Reid.)https://scholars.fhsu.edu/tj_postcards/2353/thumbnail.jp

    Alfv\`en wave phase-mixing and damping in the ion cyclotron range of frequencies

    Full text link
    Aims. To determine the effect of the Hall term in the generalised Ohm's law on the damping and phase mixing of Alfven waves in the ion cyclotron range of frequencies in uniform and non-uniform equilibrium plasmas. Methods. Wave damping in a uniform plasma is treated analytically, whilst a Lagrangian remap code (Lare2d) is used to study Hall effects on damping and phase mixing in the presence of an equilibrium density gradient. Results. The magnetic energy associated with an initially Gaussian field perturbation in a uniform resistive plasma is shown to decay algebraically at a rate that is unaffected by the Hall term to leading order in k^2di^2 where k is wavenumber and di is ion skin depth. A similar algebraic decay law applies to whistler perturbations in the limit k^2di^2>>1. In a non-uniform plasma it is found that the spatially-integrated damping rate due to phase mixing is lower in Hall MHD than it is in MHD, but the reduction in the damping rate, which can be attributed to the effects of wave dispersion, tends to zero in both the weak and strong phase mixing limits

    Entanglement, fidelity, and quantum-classical correlations with an atom walking in a quantized cavity field

    Full text link
    Stability and instability of quantum evolution are studied in the interaction between a two-level atom with photon recoil and a quantized field mode in an ideal cavity, the basic model of cavity quantum electrodynamics (QED). It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic walking of the atomic center-of-mass in the quantized field of a standing wave in the absence of any kind of interaction with environment. This kind of quantum instability manifests itself in strong variations of reduced quantum purity and entropy, correlating with the respective classical Lyapunov exponent, and in exponential sensitivity of fidelity of quantum states to small variations in the atom-field detuning. The connection between quantum entanglement and fidelity and the center-of-mass motion is clarified analytically and numerically for a few regimes of that motion. The results are illustrated with two specific initial field states: the Fock and coherent ones. Numerical experiments demonstrate various manifestations of the quantum-classical correspondence, including dynamical chaos and fractals, which can be, in principle, observed in real experiments with atoms and photons in high finesse cavities

    Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas

    Get PDF
    In this work we used Particle-In-Cell simulations to study the interaction of circularly polarised Alhén waves with one dimensional plasma density inhomogeneities transverse to the uniform magnetic field (phase mixing) in collisionless plasmas. In our preliminary work we reported discovery of a new electron acceleration mechanism, in which progressive distortion of the Alfvén wave front, due to the differences in local Alfvén speed, generates an oblique (nearly parallel to the magnetic field) electrostatic field. The latter accelerates electrons through the Landau resonance. Here we report a detailed study of this novel mechanism, including: (i) analysis of broadening of the ion distribution function due to the presence of Alfvén waves; and (ii) the generation of compressive perturbations due to both weak non-linearity and plasma density inhomogeneity. The amplitude decay law in the inhomogeneous regions, in the kinetic regime, is demonstrated to be the same as in the MHD approximation described by Heyvaerts & Priest (1983, A&A, 117, 220)
    • 

    corecore