4,883 research outputs found

    Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release

    Get PDF
    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10856-013-4859-8) contains supplementary material, which is available to authorized users

    Influence of surface oxide characteristics and speciation on corrosion, electrochemical properties and metal release of atomized 316L stainless steel powders

    Get PDF
    Surface oxide characteristics of powder particles are important to consider for any toxicological risk assessment based on in-vitro or in-vivo tests. This study focuses on a multi-analytical approach (X-ray photoelectron spectroscopy, Auger electron spectroscopy, scanning- and transmission electron microscopy, and different electrochemical techniques) for in-depth characterization of surface oxides of inert-gas-atomized (GA) AISI 316L stainless steel powder, compared with massive sheet and a water-atomized (WA) 316L powder. Implications of differences in surface oxide phases and their surface distribution on corrosion, electrochemical properties and metal release are systematically discussed. Cr was enriched in an inner surface layer for both GA powders, with Mn and S enriched in the outermost surface oxide. The surface oxide was 2-5 nm thick for both GA powder size fractions, amorphous for the GA powder size

    Influence of surface oxide characteristics and speciation on corrosion, electrochemical properties and metal release of atomized 316L stainless steel powders

    Get PDF
    Surface oxide characteristics of powder particles are important to consider for any toxicological risk assessment based on in-vitro or in-vivo tests. This study focuses on a multi-analytical approach (X-ray photoelectron spectroscopy, Auger electron spectroscopy, scanning- and transmission electron microscopy, and different electrochemical techniques) for in-depth characterization of surface oxides of inert-gas-atomized (GA) AISI 316L stainless steel powder, compared with massive sheet and a water-atomized (WA) 316L powder. Implications of differences in surface oxide phases and their surface distribution on corrosion, electrochemical properties and metal release are systematically discussed. Cr was enriched in an inner surface layer for both GA powders, with Mn and S enriched in the outermost surface oxide. The surface oxide was 2-5 nm thick for both GA powder size fractions, amorphous for the GA powder size

    An electromagnetic shashlik calorimeter with longitudinal segmentation

    Get PDF
    A novel technique for longitudinal segmentation of shashlik calorimeters has been tested in the CERN West Area beam facility. A 25 tower very fine samplings e.m. calorimeter has been built with vacuum photodiodes inserted in the first 8 radiation lengths to sample the initial development of the shower. Results concerning energy resolution, impact point reconstruction and electron/pion separation are reported.Comment: 13 pages, 12 figure

    The Autodepalmitoylating activity of APT maintains the spatial organization of Palmitoylated membrane proteins

    Get PDF
    The localization and signaling of S-palmitoylated peripheral membrane proteins is sustained by an acylation cycle in which acyl protein thioesterases (APTs) depalmitoylate mislocalized palmitoylated proteins on endomembranes. However, the APTs are themselves reversibly S-palmitoylated, which localizes thioesterase activity to the site of the antagonistc palmitoylation activity on the Golgi. Here, we resolve this conundrum by showing that palmitoylation of APTs is labile due to autodepalmitoylation, creating two interconverting thioesterase pools: palmitoylated APT on the Golgi and depalmitoylated APT in the cytoplasm, with distinct functionality. By imaging APT-substrate catalytic intermediates, we show that it is the depalmitoylated soluble APT pool that depalmitoylates substrates on all membranes in the cell, thereby establishing its function as release factor of mislocalized palmitoylated proteins in the acylation cycle. The autodepalmitoylating activity on the Golgi constitutes a homeostatic regulation mechanism of APT levels at the Golgi that ensures robust partitioning of APT substrates between the plasma membrane and the Golgi.Fil: Vartak, Nachiket. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Papke, Bjoern. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Grecco, Hernan Edgardo. Institut Max Planck Fur Molekulare Physiologie; Alemania. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Rossmannek, Lisaweta. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Waldmann, Herbert. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Hedberg, Christian. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Bastiaens, Philippe I. H.. Institut Max Planck Fur Molekulare Physiologie; Alemani

    Step-Wise Computational Synthesis of Fullerene C60 derivatives. 1.Fluorinated Fullerenes C60F2k

    Full text link
    The reactions of fullerene C60 with atomic fluorine have been studied by unrestricted broken spin-symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on AM1 technique. The calculations were focused on a sequential addition of fluorine atom to the fullerene cage following indication of the cage atom highest chemical susceptibility that is calculated at each step. The effectively-non-paired-electron concept of the fullerene atoms chemical susceptibility lays the foundation of the suggested computational synthesis. The obtained results are analyzed from energetic, symmetry, and the composition abundance viewpoints. A good fitting of the data to experimental findings proves a creative role of the suggested synthesis methodology.Comment: 33 pages, 11 figures, 2 tables, 2 chart

    Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides

    Get PDF
    Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes

    Hadron beam test of a scintillating fibre tracker system for elastic scattering and luminosity measurement in ATLAS

    Full text link
    A scintillating fibre tracker is proposed to measure elastic proton scattering at very small angles in the ATLAS experiment at CERN. The tracker will be located in so-called Roman Pot units at a distance of 240 m on each side of the ATLAS interaction point. An initial validation of the design choices was achieved in a beam test at DESY in a relatively low energy electron beam and using slow off-the-shelf electronics. Here we report on the results from a second beam test experiment carried out at CERN, where new detector prototypes were tested in a high energy hadron beam, using the first version of the custom designed front-end electronics. The results show an adequate tracking performance under conditions which are similar to the situation at the LHC. In addition, the alignment method using so-called overlap detectors was studied and shown to have the expected precision.Comment: 12 pages, 8 figures. Submitted to Journal of Instrumentation (JINST

    Giant lobelias exemplify convergent evolution

    Get PDF
    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution
    • …
    corecore