8,014 research outputs found

    The SEALS Yardsticks for Ontology Management

    Get PDF
    This paper describes the rst SEALS evaluation campaign over ontology engineering tools (i.e., the SEALS Yardsticks for Ontology Management). It presents the dierent evaluation scenarios dened to evaluate the conformance, interoperability and scalability of these tools, and the test data used in these scenarios

    Non-equilibrium spin dynamics in a trapped Fermi gas with effective spin-orbit interaction

    Full text link
    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and non-trivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive non-equilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters.Comment: 5 pages, 4 figures; published versio

    A Two-Form Formulation of the Vector-Tensor Multiplet in Central Charge Superspace

    Get PDF
    A two-form formulation for the N=2 vector-tensor multiplet is constructed using superfield methods in central charge superspace. The N=2 non-Abelian standard supergauge multiplet in central charge superspace is also discussed, as is with the associated Chern-Simons form. We give the constraints, solve the Bianchi identities and present the action for a theory of the vector-tensor multiplet coupled to the non-Abelian supergauge multiplet via the Chern-Simons form.Comment: 16 pages, LaTeX2e with AMS-LaTe

    N=2 central charge superspace and a minimal supergravity multiplet

    Get PDF
    We extend the notion of central charge superspace to the case of local supersymmetry. Gauged central charge transformations are identified as diffeomorphisms at the same footing as space-time diffeomorphisms and local supersymmetry transformations. Given the general structure we then proceed to the description of a particular vector-tensor supergravity multiplet of 24+24 components, identified by means of rather radical constraints

    S. 600-An Unnecessary and Dangerous Foray into Classic Populism

    Get PDF

    First-principles investigation of spin polarized conductance in atomic carbon wire

    Full text link
    We analyze spin-dependent energetics and conductance for one dimensional (1D) atomic carbon wires consisting of terminal magnetic (Co) and interior nonmagnetic (C) atoms sandwiched between gold electrodes, obtained employing first-principles gradient corrected density functional theory and Landauer's formalism for conductance. Wires containing an even number of interior carbon atoms are found to be acetylenic with sigma-pi bonding patterns, while cumulene structures are seen in wires containing odd number of interior carbon atoms, as a result of strong pi-conjugation. Ground states of carbon wires containing up to 13 C atoms are found to have anti-parallel spin configurations of the two terminal Co atoms, while the 14 C wire has a parallel Co spin configuration in the ground state. The stability of the anti-ferromagnetic state in the wires is ascribed to a super-exchange effect. For the cumulenic wires this effect is constant for all wire lengths. For the acetylenic wires, the super-exchange effect diminishes as the wire length increases, going to zero for the atomic wire containing 14 carbon atoms. Conductance calculations at the zero bias limit show spin-valve behavior, with the parallel Co spin configuration state giving higher conductance than the corresponding anti-parallel state, and a non-monotonic variation of conductance with the length of the wires for both spin configurations.Comment: revtex, 6 pages, 5 figure

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde

    Trapping and observing single atoms in the dark

    Get PDF
    A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 0.010 ms, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon
    • 

    corecore