4,029 research outputs found

    Asymmetric core combustion in neutron stars and a potential mechanism for gamma ray bursts

    Full text link
    We study the transition of nuclear matter to strange quark matter (SQM) inside neutron stars (NSs). It is shown that the influence of the magnetic field expected to be present in NS interiors has a dramatic effect on the propagation of a laminar deflagration (widely studied so far), generating a strong acceleration of the flame in the polar direction. This results in a strong asymmetry in the geometry of the just formed core of hot SQM which resembles a cylinder orientated in the direction of the magnetic poles of the NS. This geometrical asymmetry gives rise to a bipolar emission of the thermal neutrino-antineutrino pairs produced in the process of SQM formation. The neutrino-antineutrino pairs annihilate into electron-positron pairs just above the polar caps of the NS giving rise to a relativistic fireball, thus providing a suitable form of energy transport and conversion to gamma emission that may be associated to short gamma ray bursts (GRBs).Comment: 2 figure

    Pharmacology and clinical drug candidates in redox medicine

    Get PDF
    SIGNIFICANCE Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful. Recent Advances: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is, up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not for indications based on oxidative stress, and repurposing seems to be a viable option. CRITICAL ISSUES For all other targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study, specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. FUTURE DIRECTIONS The current promising data based on new targets, drugs, and drug repurposing are mainly a result of academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near future, possibly leading towards a new era of redox medicine

    Examination of stick-slip scenario on lubricated spring-brake systems

    Get PDF
    Several complex mechanisms can be responsible for undesirable friction-induced vibrations in many mechanical systems. This paper presents a tribological and dynamic analysis of the stick-slip problem, under greased lubrication, taking into account the practical application of a spring-brake system used in electric tubular motors. The main functioning of these brakes is based on the frictional greased contact between a stationary cylinder and a torsional spring, which rotates inside it. The identification of the parameters that most affect the stick-slip appearance in greased contacts requires a complete understanding and appropriate analysis of the entire system, to identify the effects of all physical parameters on the system. Here the global dynamics and the local contact behaviour is analysed, providing an in-depth examination of the stick-slip phenomenon on a greased contact

    Microfluidic platform for electrophysiological studies on Xenopus laevis oocytes under varying gravity levels

    Full text link
    Voltage clamp measurements reveal important insights into the activity of membrane ion channels. While conventional voltage clamp systems are available for laboratory studies, these instruments are generally unsuitable for more rugged operating environments. In this study, we present a non-invasive microfluidic voltage clamp system developed for the use under varying gravity levels. The core component is a multilayer microfluidic device that provides an immobilisation site for Xenopus laevis oocytes on an intermediate layer, and fluid and electrical connections from either side of the cell. The configuration that we term the asymmetrical transoocyte voltage clamp (ATOVC) also permits electrical access to the cytosol of the oocyte without physical introduction of electrodes by permeabilisation of a large region of the oocyte membrane so that a defined membrane patch can be voltage clamped. The constant low level air pressure applied to the oocyte ensures stable immobilisation, which is essential for keeping the leak resistance constant even under varying gravitational forces. The ease of oocyte mounting and immobilisation combined with the robustness and complete enclosure of the fluidics system allow the use of the ATOVC under extreme environmental conditions, without the need for intervention by a human operator. Results for oocytes over-expressing the epithelial sodium channel (ENaC) obtained under laboratory conditions as well as under conditions of micro- and hypergravity demonstrate the high reproducibility and stability of the ATOVC system under distinct mechanical scenarios

    Elemental abundance differences in the 16 Cygni binary system: a signature of gas giant planet formation?

    Full text link
    The atmospheric parameters of the components of the 16Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of 0.023 dex. The fact that 16CygA has about four times more lithium than 16CygB is normal considering the slightly different masses of the stars. The abundance patterns of 16CygA and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z>30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (0.018 dex, on average). We find that 16CygA is more metal-rich than 16CygB by 0.041+/-0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (Tc) is detected. Based on these results, we conclude that if the process of planet formation around 16CygB is responsible for the observed abundance pattern, the formation of gas giants produces a constant downwards shift in the photospheric abundance of metals, without a Tc correlation. The latter would be produced by the formation of terrestrial planets instead, as suggested by other recent works on precise elemental abundances. Nevertheless, a scenario consistent with these observations requires the convective envelopes of 1 Msun stars to reach their present-day sizes about three times quicker than predicted by standard stellar evolution models.Comment: ApJ, in pres

    Relativistic Structure, Stability and Gravitational Collapse of Charged Neutron Stars

    Get PDF
    Charged stars have the potential of becoming charged black holes or even naked singularities. It is presented a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. It is assumed an equation of state of a neutron gas at zero temperature. The charge distribution is taken as been proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge to mass ratios arbitrarily close to the extremum case. It is performed a direct check of the stability of the solutions under strong perturbations, and for different values of the charge to mass ratio. The stars that are in the stable branch oscillates and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater or equal than the extreme value explode. When a charged star is suddenly discharged, it don't necessarily collapse to form a black hole. A non-linear effect that gives rise to the formation of an external shell of matter (see Ghezzi and Letelier 2005), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.Comment: 27 pages, 14 figures, 4 tables, paper accepte

    Improvement of imiquimod solubilization and skin retention via tpgs micelles: Exploiting the co-solubilizing effect of oleic acid

    Get PDF
    Imiquimod (IMQ) is an immunostimulant drug approved for the topical treatment of actinic keratosis, external genital-perianal warts as well as superficial basal cell carcinoma that is used off-label for the treatment of different forms of skin cancers, including some malignant melanocytic proliferations such as lentigo maligna, atypical nevi and other in situ melanoma-related diseases. Imiquimod skin delivery has proven to be a real challenge due to its very low water-solubility and reduced skin penetration capacity. The aim of the work was to improve the drug solubility and skin retention using micelles of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a water-soluble derivative of vitamin E, co-encapsulating various lipophilic compounds with the potential ability to improve imiquimod affinity for the micellar core, and thus its loading into the nanocarrier. The formulations were characterized in terms of particle size, zeta potential and stability over time and micelles performance on the skin was evaluated through the quantification of imiquimod retention in the skin layers and the visualization of a micelle-loaded fluorescent dye by two-photon microscopy. The results showed that imiquimod solubility strictly depends on the nature and concentration of the co-encapsulated compounds. The micellar formulation based on TPGS and oleic acid was identified as the most interesting in terms of both drug solubility (which was increased from few µg/mL to 1154.01 ± 112.78 µg/mL) and micellar stability (which was evaluated up to 6 months from micelles preparation). The delivery efficiency after the application of this formulation alone or incorporated in hydrogels showed to be 42-and 25-folds higher than the one of the commercial creams

    Study of the impact of the post-MS evolution of the host star on the orbits of close-in planets. I. Sample definition and physical properties

    Full text link
    Context: To date, more than 30 planets have been discovered around giant stars, but only one of them has been found to be orbiting within 0.6 AU from the host star, in direct contrast to what is observed for FGK dwarfs. This result suggests that evolved stars destroy/engulf close-in planets during the red giant phase. Aims: We are conducting a radial velocity survey of 164 bright G and K giant stars in the southern hemisphere with the aim of studying the effect of the host star evolution on the inner structure of planetary systems. In this paper we present the spectroscopic atmospheric parameters (\Teff, \logg, ξ\xi, [Fe/H]) and the physical properties (mass, radius, evolutionary status) of the program stars. In addition, rotational velocities for all of our targets were derived. Methods: We used high resolution and high S/N spectra to measure the equivalent widths of many Fe{\sc\,i} and Fe{\sc\,ii} lines, which were used to derive the atmospheric parameters by imposing local thermodynamic and ionization equilibrium. The effective temperatures and metallicities were used, along with stellar evolutionary tracks to determine the physical properties and evolutionary status of each star. Results: We found that our targets are on average metal rich and they have masses between ∼\sim\,1.0\,M⊙_\odot and 3.5\,M⊙_\odot. In addition, we found that 122 of our targets are ascending the RGB, while 42 of them are on the HB phase.Comment: Accepted for publication in A&
    • …
    corecore