205 research outputs found

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    An alternative method for phase-unwrapping of interferometric data

    Get PDF
    In this paper we present a novel algorithm for phase unwrapping where only a subset of data from the wrapped phase map is used to reconstruct the unwrapped phase map as a linear combination of radial basis functions (RBF’s). For noisy phase maps this algorithm gives better results than three reference algorithms based on radial basis functions, Zernike polynomials and path dependent phase unwrapping strategies

    ©FUNPEC-RP www

    Get PDF
    ABSTRACT. The tumor necrosis factor-alpha (TNF-α) gene plays an important role in cell proliferation, differentiation, apoptosis, lipid metabolism, coagulation, insulin resistance, and endothelial function. Polymorphisms of TNF-α have been associated with cancer. We examined the role of the -308G>A polymorphism in this gene by comparing the genotypes of 294 healthy Mexican women with those of 465 Mexican women with breast cancer. The observed genotype frequencies for controls and breast cancer patients were 1 and 14% for AA, 13 and 21% for GA, and 86 and 65% for GG, respectively. We found that the odds ratio (OR) for AA genotype was 2.4, with a 95% confidence interval (95%CI) of 5.9-101.1 (P = 0.0001). The association was also evident when comparing the distribution of the AA-GA genotype in patients in the following categories: 1) premenopause and obesity I (OR = 3.5, 95%CI = 1.3-9.3, P = 0.008), 2) Her-2 neu and tumor stage I-II (OR = 2.5, 95%CI = 1.31-4.8, P = 0.004), 3) premenopause and tumor stage III-IV (OR = 1.7, 95%CI = 1.0-2.9, P = 0.034), 4) chemotherapy non-response and abnormal hematocrit (OR = 2.4, 95%CI = 1.2-4.8, P = 0.015), 5) body mass index and Her-2 neu and III-IV tumor stage (OR = 2.8, 95%CI = 1.2-6.6, P = 0.016), and 6) nodule metastasis and K-I67 (OR = 4.0, 95%CI = 1.01-15.7, P = 0.038). We concluded that the genotypes AA-GA of the -308G>A polymorphism in TNF-α significantly contribute to breast cancer susceptibility in the analyzed sample from the Mexican population

    The Drosophila FoxA Ortholog Fork Head Regulates Growth and Gene Expression Downstream of Target of Rapamycin

    Get PDF
    Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels

    Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance

    Get PDF
    Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development

    Structural and Functional Diversity of Acidic Scorpion Potassium Channel Toxins

    Get PDF
    Background: Although the basic scorpion K + channel toxins (KTxs) are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K + channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. Principal Findings: Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new a-KTx subfamilies (a-KTx28, a-KTx29, and a-KTx30), and two are new members of the known k-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the a-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized a-helix-loop-b-sheet (CS-a/b) fold motif that has no apparent a-helixs and b-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a Kd of 11.69 mM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized a-helix-loop-helix (CS-a/a) fold scaffold motif

    Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra

    Get PDF
    Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells
    • …
    corecore