5,968 research outputs found

    Optical Particle Detection in Liquid Suspensions with a Hybrid Integrated Microsystem

    Get PDF
    AbstractA compact, robust and portable system for optical particle detection in liquid suspensions, achieved through the hybrid integration of commercial components, such as VCSELs and microlenses, in a silicon micromachined structure is presented. We demonstrate the feasibility of fabricating a device providing up to 4 collimated laser beams, with the ability of detecting and distinguishing microparticles of several diameters, even in mixed suspensions. This optical microsystem represents an alternative design for microflow cytometers based on optical fibres, and is aligned with the current tendency set by the Point-of-care devices

    Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar Markarian 421 during February and May 2000

    Full text link
    In this paper we present the results of simultaneous observations of the TeV blazar Markarian 421 (Mrk 421) at X-ray and TeV Gamma-ray energies with the Rossi X-Ray Timing Explorer (RXTE) and the stereoscopic Cherenkov Telescope system of the HEGRA (High Energy Gamma Ray Astronomy) experiment, respectively. The source was monitored from February 2nd to February 16th and from May 3rd to May 8th, 2000. We discuss in detail the temporal and spectral properties of the source. Remarkably, the TeV observations of February 7th/8th showed statistically significant evidence for substantial TeV flux variability on 30 min time scale. We show the results of modeling the data with a time dependent homogeneous Synchrotron Self-Compton (SSC) model. The X-ray and TeV gamma-ray emission strengths and energy spectra together with the rapid flux variability strongly suggest that the emission volume is approaching the observer with a Doppler factor of 50 or higher. The different flux variability time scales observed at X-rays and TeV Gamma-rays indicate that a more detailed analysis will require inhomogeneous models with several emission zones.Comment: Accepted for Publication in ApJ, 21 Pages, 5 Figure

    Rejection of the hypothesis that Markarian 501 TeV photons are pure Bose-Einstein condensates

    Full text link
    The energy spectrum of the Blazar type galaxy Markarian 501 (Mrk 501) as measured by the High-Energy-Gamma-Ray Astronomy (HEGRA) air Cerenkov telescopes extends beyond 16 TeV and constitutes the most energetic photons observed from an extragalactic object. A fraction of the emitted spectrum is possibly absorbed in interactions with low energy photons of the diffuse extragalactic infrared radiation, which in turn offers the unique possibility to measure the diffuse infrared radiation density by TeV spectroscopy. The upper limit on the density of the extragalactic infrared radiation derived from the TeV observations imposes constraints on models of galaxy formation and stellar evolution. One of the recently published ideas to overcome severe absorption of TeV photons is based upon the assumption that sources like Mrk 501 could produce Bose-Einstein condensates of coherent photons. The condensates would have a higher survival probability during the transport in the diffuse radiation field and could mimic TeV air shower events. The powerful stereoscopic technique of the HEGRA air Cerenkov telescopes allows to test this hypothesis by reconstructing the penetration depths of TeV air shower events: Air showers initiated by Bose-Einstein condensates are expected to reach the maximum of the shower development in the atmosphere earlier than single photon events. By comparing the energy-dependent penetration depths of TeV photons from Mrk 501 with those from the TeV standard-candle Crab Nebula and simulated air shower events, we can reject the hypothesis that TeV photons from Mrk 501 are pure Bose-Einstein condensates.Comment: 9 pages, 2 figures, published by ApJ Letters, revised version (simulation results added

    The TeV Energy Spectrum of Mkn 501 Measured with the Stereoscopic Telescope System of HEGRA during 1998 and 1999

    Full text link
    During 1997, the BL Lac object Mkn 501 went into an extraordinary state of high X-ray and TeV gamma-ray activity, lasting more than 6 months. In this paper we report on the TeV emission characteristics of the source in the subsequent years of 1998 and 1999 as measured with the Stereoscopic Cherenkov Telescope System of HEGRA (La Palma, Canary Islands). Our observations reveal a 1998-1999 mean emission level at 1 TeV of 1/3 of the flux of the Crab Nebula, a factor of 10 lower than during the year of 1997. A dataset of 122 observations hours with the HEGRA telescope system makes it possible to assess for the first time the Mkn 501 TeV energy spectrum for a mean flux level substantially below that of the Crab Nebula with reasonable statistical accuracy. Excluding the data of a strong flare, we find evidence that the 1998--1999 low-flux spectrum is substantially softer (by 0.44+-0.1(stat) in spectral index) than the 1997 time averaged spectrum. The 500 GeV to 10 TeV energy spectrum can well be described by a power law model with exponential cutoff: dN/dE ~ E^(-alpha) exp(-E/E0) with alpha=2.31+-0.22(stat), and E0=5.1 (-2.3+7.8)(stat) TeV. Within statistical accuracy, also a pure power law model gives an acceptable fit to the data: dN/dE ~ E^(-Gamma) with Gamma=2.76+-0.08(stat). After presenting the 1998-1999 TeV characteristics of the source we discuss the implications of the results.Comment: Accepted for publication in The Astrophysical Journal, Part 1, on August 4th, 200

    The Energy Spectrum of TeV Gamma-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes

    Full text link
    The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for a total of about 200 hrs during two observational campaigns: from September 1997 to March 1998 and from August 1998 to April 1999. The recent detailed studies of system performance give an energy threshold and an energy resolution for gamma-rays of 500 GeV and ~ 18%, respectively. The Crab energy spectrum was measured with the HEGRA IACT system in a very broad energy range up to 20 TeV, using observations at zenith angles up to 65 degrees. The Crab data can be fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2} s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA IACT system, agrees within 15% in the absolute scale and within 0.1 units in the power law index with the latest measurements by the Whipple, CANGAROO and CAT groups, consistent within the statistical and systematic errors quoted by the experiments. The pure power-law spectrum of TeV gamma-rays from the Crab Nebula constrains the physics parameters of the nebula environment as well as the models of photon emission.Comment: to appear in ApJ, 29 pages, 6 figure

    Testing Theories of Gravitation Using 21-Year Timing of Pulsar Binary J1713+0747

    Get PDF
    We report 21-year timing of one of the most precise pulsars: PSR J1713+0747. Its pulse times of arrival are well modeled by a comprehensive pulsar binary model including its three-dimensional orbit and a noise model that incorporates short-and long-timescale correlated noise such as jitter and red noise. Its timing residuals have weighted root mean square similar to 92 ns. The new data set allows us to update and improve previous measurements of the system properties, including the masses of the neutron star (1.31 +/- 0.11 M-circle dot) and the companion white dwarf (0.286 +/- 0.012 M-circle dot) as well as their parallax distance 1.15 +/- 0.03 kpc. We measured the intrinsic change in orbital period, (P) over dot(b)(Int), is -0.20 +/- 0.17 ps s(-1), which is not distinguishable from zero. This result, combined with the measured (P) over dot(b)(Int) of other pulsars, can place a generic limit on potential changes in the gravitational constant G. We found that (G) over dot/G is consistent with zero [(-0.6 +/- 1.1) x 10(-12) yr(-1), 95% confidence] and changes at least a factor of 31 (99.7% confidence) more slowly than the average expansion rate of the universe. This is the best (G) over dot/G limit from pulsar binary systems. The (P) over dot(b)(Int) of pulsar binaries can also place limits on the putative coupling constant for dipole gravitational radiation kappa(D) = (-0.9 +/- 3.3) 10(-4) (95% confidence). Finally, the nearly circular orbit of this pulsar binary allows us to constrain statistically the strong-field post-Newtonian parameters Delta, which describes the violation of strong equivalence principle, and (alpha) over cap (3), which describes a breaking of both Lorentz invariance in gravitation and conservation of momentum. We found, at 95% confidence, Delta <0.01 and (3) <2 x 10(-20) based on PSR J1713+0747

    Evidence for TeV gamma ray emission from Cassiopeia A

    Get PDF
    232 hours of data were accumulated from 1997 to 1999, using the HEGRA Stereoscopic Cherenkov Telescope System to observe the supernova remnant Cassiopeia A. TeV gamma ray emission was detected at the 5 sigma level, and a flux of (5.8 +- 1.2(stat) +- 1.2(syst)) 10^(-9) ph m^(-2) s^(-1) above 1 TeV was derived. The spectral distribution is consistent with a power law with a differential spectral index of -2.5 +- 0.4(stat) +- 0.1(syst) between 1 and 10 TeV. As this is the first report of the detection of a TeV gamma ray source on the "centi-Crab" scale, we present the analysis in some detail. Implications for the acceleration of cosmic rays depend on the details of the source modeling. We discuss some important aspects in this paper.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Correlated intense X-ray and TeV activity of Mrk~501 in 1998 June

    Full text link
    We present exactly simultaneous X-ray and TeV monitoring with {\it RXTE} and HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial period of very low flux at both wavelengths, the source underwent a remarkable flare in the TeV and X-ray energy bands, lasting for about six days and with a larger amplitude at TeV energies than in the X-ray band. At the peak of the TeV flare, rapid TeV flux variability on sub-hour timescales is found. Large spectral variations are observed at X-rays, with the 3--20 keV photon index of a pure power law continuum flattening from Γ=2.3\Gamma=2.3 to Γ=1.8\Gamma=1.8 on a timescale of 2--3 days. This implies that during the maximum of the TeV activity, the synchrotron peak shifted to energies ≳50\gtrsim 50 keV, a behavior similar to that observed during the longer-lasting, more intense flare in 1997 April. The TeV spectrum during the flare is described by a power law with photon index Γ=1.9\Gamma=1.9 and an exponential cutoff at ∌\sim 4 TeV; an indication for spectral softening during the flare decay is observed in the TeV hardness ratios. Our results generally support a scenario where the TeV photons are emitted via inverse Compton scattering of ambient seed photons by the same electron population responsible for the synchrotron X-rays. The simultaneous spectral energy distributions (SEDs) can be fit with a one-zone synchrotron-self Compton model assuming a substantial increase of the magnetic field and the electron energy by a factor of 3 and 10, respectively.Comment: Accepted for publication in ApJ, Part

    A study of Tycho's SNR at TeV energies with the HEGRA CT-System

    Get PDF
    Tycho's supernova remnant (SNR) was observed during 1997 and 1998 with the HEGRA Cherenkov Telescope System in a search for gamma-ray emission at energies above ~1 TeV. An analysis of these data, ~65 hours in total, resulted in no evidence for TeV gamma-ray emission. The 3sigma upper limit to the gamma-ray flux (>1 TeV) from Tycho is estimated at 5.78x10^{-13} photons cm^{-2} s^{-1}, or 33 milli-Crab. We interpret our upper limit within the framework of the following scenarios: (1) that the observed hard X-ray tail is due to synchrotron emission. A lower limit on the magnetic field within Tycho may be estimated B>=22 microG, assuming that the RXTE-detected X-rays were due to synchrotron emission. However, using results from a detailed model of the ASCA emission, a more conservative lower limit B>=6 microG is derived. (2) the hadronic model of Drury, Aharonian & Voelk, and (3) the more recent time-dependent kinetic theory of Berezhko & Voelk. Our upper limit lies within the range of predicted values of both hadronic models, according to uncertainties in physical parameters of Tycho, and shock acceleration details. In the latter case, the model was scaled to suit the parameters of Tycho and re-normalised to account for a simplification of the original model. We find that we cannot rule out Tycho as a potential contributor at an average level to the Galactic cosmic-ray flux.Comment: 9 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic
    • 

    corecore