62 research outputs found
Multihomogeneous resultant formulae by means of complexes
We provide conditions and algorithmic tools so as to classify and construct
the smallest possible determinantal formulae for multihomogeneous resultants
arising from Weyman complexes associated to line bundles in products of
projective spaces. We also examine the smallest Sylvester-type matrices,
generically of full rank, which yield a multiple of the resultant. We
characterize the systems that admit a purely B\'ezout-type matrix and show a
bijection of such matrices with the permutations of the variable groups. We
conclude with examples showing the hybrid matrices that may be encountered, and
illustrations of our Maple implementation. Our approach makes heavy use of the
combinatorics of multihomogeneous systems, inspired by and generalizing results
by Sturmfels-Zelevinsky, and Weyman-Zelevinsky.Comment: 30 pages. To appear: Journal of Symbolic Computatio
On the maximal number of real embeddings of spatial minimally rigid graphs
The number of embeddings of minimally rigid graphs in is (by
definition) finite, modulo rigid transformations, for every generic choice of
edge lengths. Even though various approaches have been proposed to compute it,
the gap between upper and lower bounds is still enormous. Specific values and
its asymptotic behavior are major and fascinating open problems in rigidity
theory. Our work considers the maximal number of real embeddings of minimally
rigid graphs in . We modify a commonly used parametric
semi-algebraic formulation that exploits the Cayley-Menger determinant to
minimize the {\em a priori} number of complex embeddings, where the parameters
correspond to edge lengths. To cope with the huge dimension of the parameter
space and find specializations of the parameters that maximize the number of
real embeddings, we introduce a method based on coupler curves that makes the
sampling feasible for spatial minimally rigid graphs.
Our methodology results in the first full classification of the number of
real embeddings of graphs with 7 vertices in , which was the
smallest open case. Building on this and certain 8-vertex graphs, we improve
the previously known general lower bound on the maximum number of real
embeddings in
On the asymptotic and practical complexity of solving bivariate systems over the reals
This paper is concerned with exact real solving of well-constrained,
bivariate polynomial systems. The main problem is to isolate all common real
roots in rational rectangles, and to determine their intersection
multiplicities. We present three algorithms and analyze their asymptotic bit
complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based
method, and \sOB(N^{12}) for two subresultant-based methods: this notation
ignores polylogarithmic factors, where bounds the degree and the bitsize of
the polynomials. The previous record bound was \sOB(N^{14}).
Our main tool is signed subresultant sequences. We exploit recent advances on
the complexity of univariate root isolation, and extend them to sign evaluation
of bivariate polynomials over two algebraic numbers, and real root counting for
polynomials over an extension field. Our algorithms apply to the problem of
simultaneous inequalities; they also compute the topology of real plane
algebraic curves in \sOB(N^{12}), whereas the previous bound was
\sOB(N^{14}).
All algorithms have been implemented in MAPLE, in conjunction with numeric
filtering. We compare them against FGB/RS, system solvers from SYNAPS, and
MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is
among the most robust, and its runtimes are comparable, or within a small
constant factor, with respect to the C/C++ libraries.
Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure
Exact results for the star lattice chiral spin liquid
We examine the star lattice Kitaev model whose ground state is a a chiral
spin liquid. We fermionize the model such that the fermionic vacua are toric
code states on an effective Kagome lattice. This implies that the Abelian phase
of the system is inherited from the fermionic vacua and that time reversal
symmetry is spontaneously broken at the level of the vacuum. In terms of these
fermions we derive the Bloch-matrix Hamiltonians for the vortex free sector and
its time reversed counterpart and illuminate the relationships between the
sectors. The phase diagram for the model is shown to be a sphere in the space
of coupling parameters around the triangles of the lattices. The abelian phase
lies inside the sphere and the critical boundary between topologically distinct
Abelian and non-Abelian phases lies on the surface. Outside the sphere the
system is generically gapped except in the planes where the coupling parameters
are zero. These cases correspond to bipartite lattice structures and the
dispersion relations are similar to that of the original Kitaev honeycomb
model. In a further analysis we demonstrate the three-fold non-Abelian
groundstate degeneracy on a torus by explicit calculation.Comment: 7 pages, 8 figure
Compact Formulae in Sparse Elimination
International audienceIt has by now become a standard approach to use the theory of sparse (or toric) elimination, based on the Newton polytope of a polynomial, in order to reveal and exploit the structure of algebraic systems. This talk surveys compact formulae, including older and recent results, in sparse elimination. We start with root bounds and juxtapose two recent formulae: a generating function of the m-Bézout bound and a closed-form expression for the mixed volume by means of a matrix permanent. For the sparse resultant, a bevy of results have established determinantal or rational formulae for a large class of systems, starting with Macaulay. The discriminant is closely related to the resultant but admits no compact formula except for very simple cases. We offer a new determinantal formula for the discriminant of a sparse multilinear system arising in computing Nash equilibria. We introduce an alternative notion of compact formula, namely the Newton polytope of the unknown polynomial. It is possible to compute it efficiently for sparse resultants, discriminants, as well as the implicit equation of a parameterized variety. This leads us to consider implicit matrix representations of geometric objects
Pruning Algorithms for Pretropisms of Newton Polytopes
Pretropisms are candidates for the leading exponents of Puiseux series that
represent solutions of polynomial systems. To find pretropisms, we propose an
exact gift wrapping algorithm to prune the tree of edges of a tuple of Newton
polytopes. We prefer exact arithmetic not only because of the exact input and
the degrees of the output, but because of the often unpredictable growth of the
coordinates in the face normals, even for polytopes in generic position. We
provide experimental results with our preliminary implementation in Sage that
compare favorably with the pruning method that relies only on cone
intersections.Comment: exact, gift wrapping, Newton polytope, pretropism, tree pruning,
accepted for presentation at Computer Algebra in Scientific Computing, CASC
201
Losing Track of the Asset Markets: The Case of Housing and Stock
This paper revisits the relationships among macroeconomic variables and asset returns. Based on recent developments in econometrics, we categorize competing models of asset returns into different "Equivalence Predictive Power Classes" (EPPC). During the pre-crisis period (1975-2005), some models that emphasize imperfect capital markets outperform an AR(1) for the forecast of housing returns. After 2006, a model that includes both an external finance premium (EFP) and the TED spread "learns and adjusts" faster than competing models. Models that encompass GDP experience a significant decay in predictive power. We also demonstrate that a simulation-based approach is complementary to the EPPC methodology
Products of Euclidean Metrics, Applied to Proximity Problems among Curves: Unified Treatment of Discrete Fréchet and Dynamic Time Warping Distances
Approximate Nearest Neighbor (ANN) search is a fundamental computational problem that has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets, whereas complex shapes have not been sufficiently addressed. Here, we focus on distance functions between discretized curves in Euclidean space: They appear in a wide range of applications, from road segments and molecular backbones to time-series in general dimension. For ℓp-products of Euclidean metrics, for any constant p, we propose simple and efficient data structures for ANN based on randomized projections: These data structures are of independent interest. Furthermore, they serve to solve proximity questions under a notion of distance between discretized curves, which generalizes both discrete Fréchet and Dynamic Time Warping distance functions. These are two very popular and practical approaches to comparing such curves. We offer, for both approaches, the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our methods; our algorithm is especially efficient when the length of the curves is bounded. Finally, we focus on discrete Fréchet distance when the ambient space is high dimensional and derive complexity bounds in terms of doubling dimension as well as an improved approximate near neighbor search. © 2020 ACM
- …