419 research outputs found

    Evidence For Advective Flow From Multi-Wavelength Observations Of Nova Muscae

    Get PDF
    We model the UV/optical spectrum of the black hole binary Nova Muscae as a sum of black body emissions from the outer region of an accretion disk. We show for self-consistency that scattering effects in this region are not important. The black hole mass (M6MM \approx 6 M_\odot), the inclination angle (μ0.5\mu \approx 0.5) and the distance to the source (D5D \approx 5 kpc) have been constrained by optical observations during quiescence (Orosz et al. 1996). Using these values we find that the accretion rate during the peak was M˙8×1019{\dot M} \approx 8 \times 10^{19} g sec1^{-1} and subsequently decayed exponentially. We define a radiative fraction (ff) to be the ratio of the X-ray energy luminosity to the total gravitational power dissipated for a keplerian accretion disk. We find that f0.1f \approx 0.1 and remains nearly constant during the Ultra-soft and Soft spectral states. Thus for these states, the inner region of the accretion disk is advection dominated. ff probably increased to 0.5\approx 0.5 during the Hard state and finally decreased to 0.03\approx 0.03 as the source returned to quiescence.Comment: 5 figures. uses aasms4.sty, accepted by Ap

    Mass Determination of Black Holes in LMC X-1 and Nova Muscae 1991 from their High-Energy Spectra

    Get PDF
    We offer a brief description of the bulk-motion Comptonization (BMC) model for accretion onto black holes, illustrated by its application to observational data for LMC X-1, and Nova Muscae 1991. We then extract some physical parameters of these systems from observables (within the context of the BMC model}, drawing from results on GRO J1655-40, for which we presented extensive analysis previously. We derive estimates of the mass, (16 +/- 1) solar masses and mass accretion rate in the disk in Eddington units around 2 for LMC X-1, and (24 +/- 1)d_{5.5} and the disk mass acretion rate around 3 for Nova Muscae 1991 [where d_{5.5} stands for the distance in 5.5 kpc units]. Differences between these estimates and previous estimates based on dynamical studies are discussed. It is further shown that the disk inner radius increases with the high-to-low state transition in Nova Muscae 1991. Specifically, our analysis suggests that the inner-disk radius increases to 17 Scwarzschild radii as the transition to the low-hard state occurs.Comment: 14 pages, 3 figures, The paper is accepted for publication in the Astrophysical Journal Letter

    Spectral Properties of Accretion Disks Around Black Holes II -- Sub-Keplerian Flows With and Without Shocks

    Full text link
    Close to a black hole, the density of the sub-Keplerian accreting matter becomes higher compared to a spherical flow due to the presence of a centrifugal barrier independent of whether or not a standing shock actually forms. This hot dense flow intercepts soft photons from a cold Keplerian disk and reprocesses them to form high energy X-rays and gamma rays. We study the spectral properties of various models of accretion disks where a Keplerian disk on the equatorial plane may or may not be flanked by a sub-Keplerian disk and the sub-Keplerian flow may or may not possess standing shocks. From comparison with the spectra, we believe that the observed properties could be explained better when both the components (Keplerian and sub-Keplerian) are simultaneously present close to a black hole, even though the sub-Keplerian halo component may have been produced out of the Keplerian disk itself at larger radii. We are able to understand soft and hard states of black hole candidates, properties of X-ray novae outbursts, and quasi-periodic oscillations of black hole candidates using these two component models. We fit spectra of X-ray novae GS1124-68 and GS2000+25 and satisfactorily reproduce the light curves of these objects.Comment: 15 Latex pages plus 12 figures. Macros included. Astrophysical Journal (In press

    Computation of outflow rates from accretion disks around black holes

    Full text link
    We self-consistently estimate the outflow rate from the accretion rates of an accretion disk around a black hole in which both the Keplerian and the sub-Keplerian matter flows simultaneously. While Keplerian matter supplies soft-photons, hot sub-Keplerian matter supplies thermal electrons. The temperature of the hot electrons is decided by the degree of inverse Comptonization of the soft photons. If we consider only thermally-driven flows from the centrifugal pressure-supported boundary layer around a black hole, we find that when the thermal electrons are cooled down, either because of the absence of the boundary layer (low compression ratio), or when the surface of the boundary layer is formed very far away, the outflow rate is negligible. For an intermediate size of this boundary layer the outflow rate is maximal. Since the temperature of the thermal electrons also decides the spectral state of a black hole, we predict that the outflow rate should be directly related to the spectral state.Comment: 9 pages, 5 figure

    The converging inflow spectrum is an intrinsic signature for a black hole: Monte-Carlo simulations of Comptonization on free-falling electrons

    Full text link
    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain - matter goes in and nothing comes out. As this can only happen in a black hole, it provides an unique way to see it. The accretion proceeds almost in free fall close to the black hole horizon. In this paper we calculate (by using Monte -Carlo simulations) the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) within about 3 Schwarzschild radii of the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic soft photons energy. We demonstrate the stability of the power spectral index (alpha= 1.8) over a wide range of the plasma temperature 0-10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average rest energy of electrons impinging upon the horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (hard state of BHS). Also, the change of spectral shapes from the soft to the hard X-ray state is clearly to be related with the temperature of the bulk flow. These Monte-Carlo simulated CI spectra are then a inevitable stamp of the BHS.Comment: 30 pages TeX format, 6 PS figures, accepted for ApJ Main Journa

    Hall Effect in the mixed state of moderately clean superconductors

    Get PDF
    The Hall conductivity in the mixed state of a clean (lξ0l \gg \xi_0) type-II s-wave superconductor is determined from a microscopic calculation within a quasiclassical approximation. We find that below the superconducting transition the contribution to the transverse conductivity due to dynamical fluctuations of the order parameter is compensated by the modification of the quasiparticle contribution. In this regime the nonlinear behaviour of the Hall angle is governed by the change in the effective quasiparticle scattering rate due to the reduction in the density of states at the Fermi level. The connection with experimental results is discussed

    X-ray Nova XTE J1550-564: RXTE Spectral Observations

    Get PDF
    Excellent coverage of the 1998 outburst of the X-ray Nova XTE J1550-564 was provided by the Rossi X-ray Timing Explorer. XTE J1550-564 exhibited an intense (6.8 Crab) flare on 1998 September 19 (UT), making it the brightest new X-ray source observed with RXTE. We present a spectral analysis utilizing 60 Proportional Counter Array spectra from 2.5-20 keV spanning 71 days, and a nearly continuous All Sky Monitor light curve. The spectra were fit to a model including multicolor blackbody disk and power-law components. XTE J1550-564 is observed in the very high, high/soft, and intermediate canonical outburst states of Black Hole X-ray Novae.Comment: 14 pages including 1 table and 4 figures, Accepted to ApJ Letter

    Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Full text link
    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M_solar). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.Comment: ApJ, accepte

    Different types of X-ray bursts from GRS 1915+105 and their origin

    Get PDF
    We report the X-ray observations of the Galactic X-ray transient source GRS 1915+105 with the PPCs of the Indian X-ray Astronomy Experiment(IXAE) onboard the Indian satellite IRS-P3 during 1997 June - August, which have revealed the presence of four types of intense X-ray bursts. All the observed bursts have a slow exponential rise, a sharp linear decay, and they can broadly be put in two classes: irregular and quasi-regular bursts in one class, and regular bursts in another class. The regular bursts are found to have two distinct time scales and they persist over extended durations. There is a strong correlation between the preceding quiescent time and the burst duration for the quasi-regular and irregular bursts. No such correlation is found for the regular bursts. The ratio of average flux during the burst time to the average flux during the quiescent phase is high and variable for the quasi- regular and irregular bursts while it is low and constant for the regular bursts. We suggest that the peculiar bursts that we have seen are charact- eristic of the change of state of the source. The source can switch back and forth between the low-hard state and the high-soft state near critical accretion rates in a very short time scale. A test of the model is presented using the publicly available 13-60 keV RXTE/PCA data for irregular and regular bursts concurrent with our observations.Comment: 13 pages, 12 figures, Accepted in APJ, emulateapj style use

    Temporal Properties of Cygnus X-1 During the Spectral Transitions

    Get PDF
    We report the results from our timing analysis of 15 RXTE observations of Cygnus X-1 throughout its 1996 spectral transitions. The entire period can be divided into 3 distinct phases: (1) transition from the hard to soft state, (2) soft state, and (3) transition from the soft state back to the hard state. The observed X-ray properties in phases 1 and 3 are remarkably similar, suggesting that the same physical processes are likely involved in triggering such transitions. The power density spectrum (PDS) during the transition can be characterized by a red noise component, followed by a white noise component which extends to roughly 1-3 Hz where it is cut off, and a steeper power law at higher frequencies. The X-ray flux also exhibits apparent quasi-periodic oscillation (QPO) with the centroid frequency varying in the range of 4-12 Hz. The QPO shows no correlation with the source flux, but becomes more prominent at higher energies. This type of PDS bears resemblance to that of other black hole candidates often observed in a so-called very high state, although the origin of the observed QPO may be very different. The low-frequency red noise has not been observed in the hard state, thus seems to be positively correlated with the disk mass accretion rate which is presumably low in the hard state and high in the soft state; in fact, it completely dominates the PDS in the soft state. In the framework of thermalComptonization models, Cui et al. (see astro-ph/9610071 and astro-ph/9610072) speculated that the difference in the observed spectral and timing properties between the hard and soft states is due to the presence of a ``fluctuating'' Comptonizing corona during the transition. Here we present the measured hard X-ray time lags and coherence functions between various energy bands, and show that the results strongly support such a scenario.Comment: AASTex file. 29 pages including 11 figures. To appear in Ap
    corecore