138 research outputs found

    Global ocean modeling and state estimation in support of climate research

    Get PDF
    During the last decade it has become obvious that the ocean circulation shows vigorous variability on a wide range of time and space scales and that the concept of a "sluggish" and slowly varying circulation is rather elusive. Increasing emphasis has to be put, therefore, on observing the rapidly changing ocean state on time scales ranging from weeks to decades and beyond, and on understanding the ocean's response to changing atmospheric forcing conditions. As outlined in various strategy and implementation documents (e.g., the implementation plans of WOCE, AMS, CLIVAR, and GODAE) a combination of the global ocean data sets with a state-of-the-art numerical circulation model is required to interpret the various diverse data sets and to produce the best possible estimates of the time-varying ocean circulation. The mechanism of ocean state estimates is a powerful tool for such a "synthesis" of observations, obtained on very complex space-time pattern, into one dynamically consistent picture of the global time-evolving ocean circulation. This process has much in common with ongoing analysis and reanalysis activities in the atmospheric community. But because the ocean is, and will remain for the foreseeable future, substantially under-sampled, the burden put on the modeling and estimations components is substantially larger than in the atmosphere. Moreover, the smaller dynamical eddy scales which need to be properly parameterized or resolved in ocean model simulations, put stringent requirements on computational resources for ongoing and participated climate research

    Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target

    Full text link
    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ\phi) and the target spin axis (ϕS\phi_S) about the virtual photon direction and relative to the lepton scattering plane. The extracted Fourier component \cmpi is a signal of the previously unmeasured quark transversity distribution, in conjunction with the so-called Collins fragmentation function, also unknown. The Fourier component \smpi of the asymmetry arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson productio

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Search for an exotic S=-2, Q=-2 baryon resonance at a mass near 1862 MeV in quasi-real photoproduction

    Full text link
    A search for an exotic baryon resonance with S=2,Q=2S=-2, Q=-2 has been performed in quasi-real photoproduction on a deuterium target through the decay channel ΞπΛππpπππ\Xi^- \pi^- \to \Lambda \pi^- \pi^- \to p \pi^- \pi^- \pi^-. No evidence for a previously reported Ξ(1860)\Xi^{--}(1860) resonance is found in the Ξπ\Xi^- \pi^-invariant mass spectrum. An upper limit for the photoproduction cross section of 2.1 nb is found at the 90% confidence level. The photoproduction cross section for the Ξ0(1530)\Xi^{0}(1530) is found to be between 9 and 24 nb

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small

    First Measurement of the Tensor Structure Function b1b_1 of the Deuteron

    Full text link
    The \Hermes experiment has investigated the tensor spin structure of the deuteron using the 27.6 GeV/c positron beam of \Hera. The use of a tensor polarized deuteron gas target with only a negligible residual vector polarization enabled the first measurement of the tensor asymmetry \At and the tensor structure function \bd for average values of the Bj{\o}rken variable 0.01<0.450.01<0.45 and of the squared four-momentum transfer 0.5GeV2<5GeV20.5 {\rm GeV^2} <5 {\rm GeV^2}. The quantities \At and \bd are found to be non-zero. The rise of \bd for decreasing values of xx can be interpreted to originate from the same mechanism that leads to nuclear shadowing in unpolarized scattering

    Fatigue in neuromuscular disorders: focus on Guillain–Barré syndrome and Pompe disease

    Get PDF
    Fatigue accounts for an important part of the burden experienced by patients with neuromuscular disorders. Substantial high prevalence rates of fatigue are reported in a wide range of neuromuscular disorders, such as Guillain–Barré syndrome and Pompe disease. Fatigue can be subdivided into experienced fatigue and physiological fatigue. Physiological fatigue in turn can be of central or peripheral origin. Peripheral fatigue is an important contributor to fatigue in neuromuscular disorders, but in reaction to neuromuscular disease fatigue of central origin can be an important protective mechanism to restrict further damage. In most cases, severity of fatigue seems to be related with disease severity, possibly with the exception of fatigue occurring in a monophasic disorder like Guillain–Barré syndrome. Treatment of fatigue in neuromuscular disease starts with symptomatic treatment of the underlying disease. When symptoms of fatigue persist, non-pharmacological interventions, such as exercise and cognitive behavioral therapy, can be initiated

    The HERMES Polarized Hydrogen and Deuterium Gas Target in the HERA Electron Storage Ring

    Full text link
    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

    Prospective Observational Study of Pazopanib in Patients with Advanced Renal Cell Carcinoma (PRINCIPAL Study)

    Get PDF
    Background: Real-world data are essential to accurately assessing efficacy and toxicity of approved agents in everyday practice. PRINCIPAL, a prospective, observational study, was designed to confirm the real-world safety and efficacy of pazopanib in patients with advanced renal cell carcinoma (RCC). Subjects, Materials, and Methods: Patients with clear cell advanced/metastatic RCC and a clinical decision to initiate pazopanib treatment within 30 days of enrollment were eligible. Primary objectives included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), relative dose intensity (RDI) and its effect on treatment outcomes, change in health-related quality of life (HRQoL), and safety. We also compared characteristics and outcomes of clinical-trial-eligible (CTE) patients, defined using COMPARZ trial eligibility criteria, with those of non-clinical-trial-eligible (NCTE) patients. Secondary study objectives were to evaluate clinical efficacy, safety, and RDI in patient subgroups. Results: Six hundred fifty-seven patients were enrolled and received ≥1 dose of pazopanib. Median PFS and OS were 10.3 months (95% confidence interval [CI], 9.2–12.0) and 29.9 months (95% CI, 24.7 to not reached), respectively, and the ORR was 30.3%. HRQoL showed no or little deterioration over time. Treatment-related serious adverse events (AEs) and AEs of special interest occurred in 64 (9.7%), and 399 (60.7%) patients, respectively. More patients were classified NCTE than CTE (85.2% vs. 14.8%). Efficacy of pazopanib was similar between the two groups. Conclusion: PRINCIPAL confirms the efficacy and safety of pazopanib in patients with advanced/metastatic RCC in a real-world clinical setting. Implications for Practice: PRINCIPAL is the largest (n = 657) prospective, observational study of pazopanib in patients with advanced/metastatic renal cell carcinoma, to the authors’ knowledge. Consistent with clinical trial results that often contain specific patient types, the PRINCIPAL study demonstrated that the effectiveness and safety of pazopanib is similarly safe and effective in patients with advanced kidney cancer in a real-world clinical setting. The PRINCIPAL study showed that patients with advanced kidney cancer who are treated with first-line pazopanib generally do not show disease progression for approximately 10 months and generally survive for nearly 30 months
    corecore