6,075 research outputs found

    Evidence for partial quenching of orbital angular momentum upon complex formation in the infrared spectrum of OH-acetylene

    Get PDF
    The entrance channel leading to the addition reaction between the hydroxyl radical and acetylene has been examined by spectroscopic characterization of the asymmetric CH stretching band of the π-hydrogen bonded OH-acetylene reactant complex. The infrared action spectrum observed at 3278.6 cm−1 (origin) consists of seven peaks of various intensities and widths, and is very different from those previously reported for closed-shell HF/HCl-acetylene complexes. The unusual spectrum arises from a partial quenching of the OH orbital angular momentum in the complex, which in turn is caused by a significant splitting of the OH monomer orbital degeneracy into 2A′ and 2A″ electronic states. The magnitude of the 2A′−2A″ splitting as well as the A rotational constant for the OH-acetylene complex are determined from the analysis of this b-type infrared band. The most populated OH product rotational state, jOH = 9/2, is consistent with intramolecular vibrational energy transfer to the ν2 C≡C stretching mode of the departing acetylene fragment. The lifting of the OH orbital degeneracy and partial quenching of its electronic orbital angular momentum indicate that the electronic changes accompanying the evolution of reactants into products have begun to occur in the reactant complex

    Content and changes in Provitamin A carotenoids during ripening of fruit from four popular Musa cultivars consumed in Eastern Democratic Republic of Congo

    Get PDF
    Poster presented at Nutrition Congress Africa 2012. Transforming the Nutrition Landscape in Africa. Bloemfontein (South Africa), 1-4 Oct 201

    Infrared spectrum and stability of a π-type hydrogen-bonded complex between the OH and C2H2 reactants

    Get PDF
    A hydrogen-bonded complex between the hydroxyl radical and acetylene has been stabilized in the reactant channel well leading to the addition reaction and characterized by infrared action spectroscopy in the OH overtone region. Analysis of the rotational band structure associated with the a-type transition observed at 6885.53(1) cm−1 (origin) reveals a T-shaped structure with a 3.327(5) Å separation between the centers of mass of the monomer constituents. The OH (v = 1) product states populated following vibrational predissociation show that dissociation proceeds by two mechanisms: intramolecular vibrational to rotational energy transfer and intermolecular vibrational energy transfer. The highest observed OH product state establishes an upper limit of 956 cm−1 for the stability of the π-type hydrogen-bonded complex. The experimental results are in good accord with the intermolecular distance and well depth at the T-shaped minimum energy configuration obtained from complementary ab initio calculations, which were carried out at the restricted coupled cluster singles, doubles, noniterative triples level of theory with extrapolation to the complete basis set limit

    Particle abundance in a thermal plasma: quantum kinetics vs. Boltzmann equation

    Full text link
    We study the abundance of a particle species in a thermalized plasma by introducing a quantum kinetic description based on the non-equilibrium effective action. A stochastic interpretation of quantum kinetics in terms of a Langevin equation emerges naturally. We consider a particle species that is stable in the vacuum and interacts with \emph{heavier} particles that constitute a thermal bath in equilibrium and define of a fully renormalized single particle distribution function. The distribution function thermalizes on a time scale determined by the \emph{quasiparticle} relaxation rate. The equilibrium distribution function depends on the full spectral density and features off-shell contributions to the particle abundance. A model of a bosonic field Φ\Phi in interaction with two \emph{heavier} bosonic fields is studied. We find substantial departures from the Bose-Einstein result both in the high temperature and the low temperature but high momentum region. In the latter the abundance is exponentially suppressed but larger than the Bose-Einstein result. We obtain the Boltzmann equation in renormalized perturbation theory and highlight the origin of the differences. We argue that the corrections to the abundance of cold dark matter candidates are observationally negligible and that recombination erases any possible spectral distortions of the CMB. However we expect that the enhancement at high temperature may be important for baryogenesis.Comment: 39 pages, 11 figures. Clarifying remarks. To appear in Physical Review

    A potential role for the cerebellar nuclei in absence seizures

    Get PDF
    © 2013 Alva et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Poster presented ar CNS 2013Non peer reviewe

    Extreme Waves and Coastal Erosion Hazards, Communities Risk Perception and Social Vulnerability: Analysis of Two Villages in East Nusa Tenggara (NTT)

    Get PDF
    This study aims to examine risk perception and social vulnerability of two coastal communities in NTT namely Borokanda and Mautapaga.  A quantitativemethod was applied to achieve the aim of this study. A primary dataset was collected througha structured questionnaire, which was responded to by a total of 110 households in thesecoastal communities. The differences between the coastal communities of Borokanda andMautapaga, in social vulnerability and risk perception was analysed statistically using the Mann-Whitney U test.The results show that the coastal communities of Borokanda and Mautapaga have been identified to be significantly different in ethnicity, disaster experience, and disaster knowledgeinherited from older generations. However, such indicators do not impact the differencesbetween these coastal communities on social vulnerability and risk perception. A high scoreof social vulnerability index by the coastal communities of Borokanda and Mautapaga hasbeen identified as the root cause of the low level of risk perception

    Statistical mechanical aspects of joint source-channel coding

    Full text link
    An MN-Gallager Code over Galois fields, qq, based on the Dynamical Block Posterior probabilities (DBP) for messages with a given set of autocorrelations is presented with the following main results: (a) for a binary symmetric channel the threshold, fcf_c, is extrapolated for infinite messages using the scaling relation for the median convergence time, tmed1/(fcf)t_{med} \propto 1/(f_c-f); (b) a degradation in the threshold is observed as the correlations are enhanced; (c) for a given set of autocorrelations the performance is enhanced as qq is increased; (d) the efficiency of the DBP joint source-channel coding is slightly better than the standard gzip compression method; (e) for a given entropy, the performance of the DBP algorithm is a function of the decay of the correlation function over large distances.Comment: 6 page

    An Efficient Semi-Analytical Scheme for Determining the Reflection of Lamb Waves in a Semi-Infinite Elastic Waveguide

    Get PDF
    The classical problem of reflection of Lamb waves from a free edge perpendicular to the centre line of an elastodynamic plate is studied. It is known that Lamb wave expansions for the displacement and stress fields poorly represent the irregular behaviour near corners, leading to the slow convergence of a series of such waves. The form of the irregularity for an elastodynamic corner is derived asymptotically, and a new solution method, which incorporates this corner behaviour analytically, is then implemented. Results are presented showing that this new approach represents the near-field and far-field behaviour very accurately, requiring very modest numbers of Lamb wave and corner modes. Further, it is revealed that the method can recover the trapped-mode phenomenon encountered in this configuration at the Lamé frequency and a specific Poisson’s ratio that we find to be approximately 0.224798

    Parallel vs. Sequential Belief Propagation Decoding of LDPC Codes over GF(q) and Markov Sources

    Full text link
    A sequential updating scheme (SUS) for belief propagation (BP) decoding of LDPC codes over Galois fields, GF(q)GF(q), and correlated Markov sources is proposed, and compared with the standard parallel updating scheme (PUS). A thorough experimental study of various transmission settings indicates that the convergence rate, in iterations, of the BP algorithm (and subsequently its complexity) for the SUS is about one half of that for the PUS, independent of the finite field size qq. Moreover, this 1/2 factor appears regardless of the correlations of the source and the channel's noise model, while the error correction performance remains unchanged. These results may imply on the 'universality' of the one half convergence speed-up of SUS decoding
    corecore