5,361 research outputs found
An automatic procedure for the estimation of the tail index
Extreme Value Theory is increasingly used in the modelling of financial time series. The non-normality of stock returns leads to the search for alternative distributions that allows skewness and leptokurtic behavior. One of the most used distributions is the Pareto Distribution because it allows non-normal behaviour, which requires the estimation of a tail index. This paper provides a new method for estimating the tail index. We propose an automatic procedure based on the computation of successive normality tests over the whole of the distribution in order to estimate a Gaussian Distribution for the central returns and two Pareto distributions for the tails. We find that the method proposed is an automatic procedure that can be computed without need of an external agent to take the decision, so it is clearly objective.Tail Index; Hill estimator; Normality Test
Universal direct tuner for loop control in industry
This paper introduces a direct universal (automatic) tuner for basic loop control in industrial applications. The direct feature refers to the fact that a first-hand model, such as a step response first-order plus dead time approximation, is not required. Instead, a point in the frequency domain and the corresponding slope of the loop frequency response is identified by single test suitable for industrial applications. The proposed method has been shown to overcome pitfalls found in other (automatic) tuning methods and has been validated in a wide range of common and exotic processes in simulation and experimental conditions. The method is very robust to noise, an important feature for real life industrial applications. Comparison is performed with other well-known methods, such as approximate M-constrained integral gain optimization (AMIGO) and Skogestad internal model controller (SIMC), which are indirect methods, i.e., they are based on a first-hand approximation of step response data. The results indicate great similarity between the results, whereas the direct method has the advantage of skipping this intermediate step of identification. The control structure is the most commonly used in industry, i.e., proportional-integral-derivative (PID) type. As the derivative action is often not used in industry due to its difficult choice, in the proposed method, we use a direct relation between the integral and derivative gains. This enables the user to have in the tuning structure the advantages of the derivative action, therefore much improving the potential of good performance in real life control applications
Autotuning method for a fractional order controller for a multivariable 13C isotope separation column
The preferred controller design technique in industrial applications is based on autotuning procedures that do not involve knowledge about an actual mathematical model of the process. In this paper, a novel autotuning method for designing fractional order controllers is addressed. The proposed technique is simple and efficient. Previous research with respect to autotuning methods for fractional order controllers has considered exclusively the case of a single-input single-output process. However, in this paper, a multivariable case study is preferred. The simulation results demonstrate the validity of the design technique
- …