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Abstract— The preferred controller design technique in 

industrial applications is based on autotuning procedures that 

do not involve knowledge about an actual mathematical model 

of the process. In this paper, a novel autotuning method for 

designing fractional order controllers is addressed. The 

proposed technique is simple and efficient. Previous research 

with respect to autotuning methods for fractional order 

controllers has considered exclusively the case of a single-input-

single-output process. However, in this paper, a multivariable 

case study is preferred. The simulation results demonstrate the 

validity of the design technique.  
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I. INTRODUCTION 

In large industrial plants, the modeling of the processes 

may be a tedious task. Even if a mathematical model is 

obtained, the accuracy of the model is usually limited, 

leading to a necessity of designing robust controllers to 

account for modeling uncertainties or errors. It is quite usual 

in such cases, especially in industrial fields, to design simple 

PID controllers using auto-tuning methods that do not 

require an actual mathematical process model. One of these 

autotuning methods is the one developed by Ziegler and 

Nichols [1]. This was the first auto-tuning method, being 

based on simple measurements of the process critical gain 

and critical frequency. Its disadvantages have been long 

discussed with several other auto-tuning methods being 

proposed, such as those developed by Åström-Hägglund [2], 

[3], Tan, Lee and Wang [4], Hang, Åström and Ho [5], Chen 

and Moore [6], to name just a few.  

Apart from these classical autotuning methods, the 

emergence of fractional calculus and its growing impact 

upon the design of controllers has led to the development of 

some autotuning methods for fractional order PIDs (FO-PID). 

These FO-PID controllers are in fact generalizations of the 

classical PID [7] and imply the use of a fractional integrator 

of order μ and a fractional differentiator of order λ. Although 

research in this domain has been scarce, some notable results 

in the field of fractional order autotuners may be mentioned 

such as the phase shaper [8], the relay test, based on an 

approach that considers an extension of the classical method 

used in the auto-tuning of integer order PID controllers [9] 
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or an autotuning procedure inspired from both the classical 

Ziegler-Nichols and Åström-Hägglund tuning methods [10]. 

These two last approaches are lengthy. The latter [10], 

requires first the use of the Ziegler-Nichols tuning procedure 

to determine the proportional and integrative gains of the 

controller, while the initial value of derivative gain is 

obtained using Åström-Hägglund method. Two nonlinear 

equations are derived in order to meet the phase margin 

specification. These are determined based on the critical 

frequency and critical gain obtained according to the 

Åström-Hägglund method. The method further assumes a 

fine tuning of the derivative gain in order to achieve the best 

numerical solution of these two equations. Optimization 

techniques applied to these two nonlinear equations are also 

required to determine the controller fractional orders, μ and 

λ. An optimization model is used to obtain a better step 

response of the closed loop system, in which the previously 

computed controller parameters are used as initial values for 

determining the new optimal values for the controller 

parameters. In [9], a separate fractional order PI controller 

(FO-PI) and a fractional order PD (FO-PD) controller with a 

filter are determined. The autotuning procedure is based on 

three performance specifications such as: a gain crossover 

frequency, a phase margin, along with the iso-damping 

property. The procedure is based on maximizing the 

robustness to plant gain variations.  

In this paper, a novel autotuning method for fractional 

order PI controllers is proposed with a design based on 

meeting the three performance specifications: a gain 

crossover frequency, a phase margin and the iso-damping 

property. Such design procedure is based on the well-known 

tuning method of fractional order controllers [11], [12] that 

considers a mathematical model of the process to determine 

the magnitude, phase and phase slope of the process at the 

imposed gain crossover frequency. In this paper, the process 

model is unavailable, but instead a technique to determine 

the process magnitude, phase and phase slope is proposed.  

Previous researches on autotuning methods for fractional 

order controllers have only considered single input single 

output process. In this paper, the proposed autotuning 

method is applied for a multivariable process. 

The paper is structured as follows. In section 2, the 

proposed autotuning technique for a multivariable fractional 

order PI controller is addressed. Section 3 presents the 

simulation results considering the proposed case study, a 13 

Carbon (13C) isotope separation column, while Section 4 

contains the concluding remarks.  
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II. PROPOSED AUTO-TUNING METHOD FOR MULTIVARIABLE 

PROCESSES 

The transfer function matrix of a multivariable process with 

n inputs and n outputs is given as: 
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The proposed autotuning method for the process described 

in (1), assumes a decentralized approach, with the input-

output pairing selected based on the Relative Gain Array 

[13], obtained using steady state knowledge of the process. 

Once the input-output pairs are selected, n individual FO-PI 

controllers are designed, having the transfer function as 

indicated below: 
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where  20
 
is the fractional order and kp and ki are the 

proportional and integrative gains, respectively. A higher 

value of the fractional order μ could lead to an unstable 

closed loop system and should be avoided. The 

corresponding modulus and phase of the FO-PI controller in 

(2) may be easily computed as: 
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The autotuning of the FO-PI controllers is based on three 

performance specifications [11]: a gain crossover frequency 

ωgc , a phase margin γk  and the iso-damping property. 

1. In order for the system to ensure the imposed gain 

crossover frequency, the following condition must hold: 
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where Mm is the modulus of the m
th 

diagonal element in 

Gp(s) and 
mgc is the gain crossover frequency for the m

th
 

input-output pair, with m=1,2,…,n. 

2. In order for a system to ensure a certain phase margin, the 

following condition must hold: 
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with m the phase of the m
th

 diagonal element and 
mk  the 

corresponding phase margin for the m
th

 input-output pair. 

3. In order for a system to ensure the iso-damping property, 

the following condition must hold: 
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As shown in the nonlinear equations (5)-(7), to completely 

tune the FO-PI/FO-PD controllers, the modulus, phase and 

phase slope of the process at the gain crossover frequency 

have to be known. The phase and magnitude of any stable 

process at a specific gain crossover frequency 
mgc  may be 

easily determined by applying a sinusoidal input signal of 

frequency 
mgc  to the process. To determine the phase 

slope of the process, a filtering technique is proposed as 

indicated in Fig. 1.  

 
Fig. 1. Experimental scheme used to compute the phase slope of the process 

at the gain crossover frequency 

 

The modulus and phase of each of the n input-output pairs 

may be computed as: 

im
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A

A
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where Aom is the m
th

 output amplitude ym(t), Aim is the m
th

 

input amplitude um(t) and tim-tom is the time shift between the 

input um(t) and output ym(t) signals, as indicated by τ in 

Figure 2.  

 
Fig. 2. Input um (blue) and output ym (green) signals 

 

According to Fig. 1, the following is obtained: 
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By replacing (9) into (10), the following relation is obtained: 
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 is the Laplace transform of the 

sinusoidal input signal um(t)=Aimsin( t
mgc ) given in Fig. 1, 

The derivative of this signal with respect to the Laplace 

variable s is given as: 
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Combining (11) and (12), the following equation is 

determined: 
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Considering again Fig. 1, the following is obtained: 

 

(t)yt)t(x)t(y mmm 
 

             (14) 

 

Signal )t(ym is the output of the process derivative, as it will 

be shown next:   
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Consider first the derivative of the process output signal 

Ym(s),  (t)yt
ds
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Then,  
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Replacing (15) and (13) into (17) leads to: 
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From this last relation in (18), it is obvious that the )t(ym

signal is the output of the process transfer function 

derivative (with respect to s), considering a sinusoidal signal 

applied at its input. Then, the experimental scheme in Fig. 2 

may be used to determine not only the modulus Mm and 

phase m of each input-output pair, but also the 

corresponding phase slope. According to Fig. 2, the 

following notations will be used for the modulus and phase 

of the derivative
ds

)s(dg mm
, denoted as mM and m . Since 

the performance specifications in (5)-(7) are given in the 

frequency domain, the derivative of 
ds

)s(dg mm
at the gain 

crossover frequency is computed as: 
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where both mM and m  
may be determined experimentally 

similarly to (8) as: 

 

im

y
m

A

A
M m and   

mmm yigcm tt             (20) 

with 
myA  - the amplitude of the sinusoidal signal )t(ym  

and
mm yi tt   - the time shift between the two signals um(t) 

and )t(ym .  
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(19), leads to:    
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Replacing into (21) the relation for the right hand side, 
     mmmmmm
j

m sinMjcosMeM mm 


 

and equating the real and imaginary parts of the left and 

right hand sides of (21), leads to the final relation for 

determining the phase slope at the specified gain crossover 

frequency 
mgc : 
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Then, a simple sinusoidal experiment is performed on each 

input-output signal pairs, while the rest of the input signals 

are kept constant. Finally, the output signal is filtered as 

indicated in Fig. 2 to obtain the )t(ym  signal, offline. Using 

(8) and (22) the modulus, phase and phase slope associated 

to each transfer function of the input-output pairs are 

determined. Once these are available, optimization 

techniques or graphical methods are used to solve the 

nonlinear equations in (5)-(7) and compute the FO-PI 

controllers parameters [11], [12]. To achieve this, firstly the 
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integrative gain is computed as a function of the fractional 

order μ, based on (6) and (7). Then, the two curves are 

plotted as a function of μ, with their intersection point giving 

the final values for the integrative gain ki and the fractional 

order μ. Once these two parameters are determined, the 

modulus condition in (5) is used to compute the proportional 

gain kp.  

III. SIMULATION RESULTS ON A 13C ISOTOPE SEPARATION 

COLUMN 

To illustrate the autotuning method, a three input-three 
output 13C isotope separation column is used as a case study. 
The process is characterized by large time constants and large 
time delays. The process and equipment have been 
previously described in [14], [15], [16]. Simple experiments 
on the column have led to a steady state gain matrix and the 
associated RGA number: 
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The RGA result in (24) suggests that a diagonal pairing ym-
um, with m=1,2,3, diminishes the interactions. Then, three 
FO-PI controllers will be designed using the autotuning 
method described in Section II.  

The performance specifications for the first input-output 

loop refer to a gain crossover frequency ωgc1=0.018 rad/s, a 

phase margin φm1=70
o 

and the iso-damping property. The 

auto-tuning of a FO-PI controller, as described in Section 2, 

starts with an experimental test similar to Figure 1, where 

the sinusoidal input signal is applied with a frequency 

ωgc1=0.018 rad/s and Ai1=1. The experimental results are 

given in Figure 3, where the amplitude Ai1 of the input 

signal is measured at ti1= 436.4 s. Similarly, the amplitude of 

the output signal is Ao1= 1.28 at to1=459.2 s. Using (8), the 

parameters M1 and φ1 are computed, with M1= 1.28 and 

-0.411  rad. The amplitude of )t(y1 is also determined 

from Fig. 3, 29.12 A
1y   at 5.639t

1y  s. Then, using (20), 

12.29M1  and 3.65- 1  rad. Finally, using (22), the 

phase slope is computed as s46.22
d
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With the modulus, phase and phase slope determined 

experimentally, the system of equations in (5)-(7) is solved 

to determine the parameters: kp1= 0.27, ki1= 0.0267and 

μ1=1.176. The transfer function of the designed FO-PI 

controller is: 
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The performance specifications for the second input-output 

loop refer to a gain crossover frequency ωgc2=0.03 rad/s, a 

phase margin φm2=67
o 

and the iso-damping property. For the 

auto-tuning of a FO-PI controller an experimental test 

similar to Figure 1 is performed, with the sinusoidal input 

signal having a frequency ωgc2=0.03 rad/s and Ai2=1. The 

experimental results are given in Figure 4, where the 

amplitude Ai2 of the input signal is measured at ti2= 261.5 s. 

Similarly, the amplitude of the output signal is Ao2= 0.66 at 

to2=300.7 s. Using (8), the parameters M2 and φ2 are 

computed, with M2= 0.66 and 1.176 -2  rad. The 

amplitude of )t(y2 is also determined from Figure 4,

23.72 A
2y   at 12.420t

2y  s. Then, using (20), 

72.23M2  and 4.76- 2  rad. Finally, using (22), the 

phase slope is computed as s28.32
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Fig. 3. Experimental results for the first input-output loop 

 
Fig. 4. Experimental results for the second input-output loop 

With the modulus, phase and phase slope determined 

experimentally, the system of equations in (5)-(7) is solved 

to determine the parameters: kp2= 1.58, ki2= 0.0082 and 

μ2=1.29. The transfer function of the designed FO-PI 

controller is: 
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Finally, for the third input-output loop, the performance 

specifications refer to a gain crossover frequency 

ωgc3=1.8rad/s, a phase margin φm2=66
o 

and the iso-damping 

property. For the auto-tuning of a FO-PI controller an 

experimental test similar to Figure 1 is performed, with the 
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sinusoidal input signal having a frequency ωgc3=1.8 rad/s and 

Ai3=1. The experimental results are given in Figure 5, where 

the amplitude Ai3 of the input signal is collected at ti3= 

11.35s. The amplitude of the output signal is Ao3= 4.12 at 

to3=11.945s. Using (8), the parameters M3 and φ3 are 

computed, with M3= 4.12 and 1.071 -3  rad. The 

amplitude of )t(y3 is also determined from Figure 5,

2.01 A
3y   at 3.14t

3y  s. Then, using (20), 01.2M3 

and 5.31- 3  rad. Finally, using (22), the phase slope is 

computed as s22.0
d
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3 

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Fig. 5. Experimental results for the third input-output loop 

With the modulus, phase and phase slope determined 

experimentally, the system of equations in (5)-(7) is solved 

to determine the parameters: kp3= 0.13, ki3= 2.6 and 

μ3=0.942. The transfer function of the designed FO-PI 

controller is: 
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The closed loop simulation results considering the process as 

modeled in [14], [16] are given in Figure 6, considering a 

step change in the reference of the first output signal y1. The 

final multivariable controller is given as: 
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To implement the controllers, the Oustaloup Recursive 
Approximation method is used [17]. Fig. 6 a) shows the y1 

output, while Fig. 6 b) and Fig. 6 c) show the interaction 
responses of y2 and y3. The corresponding control signals are 
given in Fig. 6 d), e) and f).  

The simulation results in Figure 6 show that the multivariable 
fractional order controller designed using the proposed 
autotuning method is robust to modeling uncertainties, 
maintaining a low overshoot in the case of the nominal 
system, as well as in the case of ±30% gain estimation errors.  
The control effort is acceptable, however, there is strong 
interaction present especially in the second output y2.  
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e) 

 

f) 

Fig. 6. Output and input signals of the closed loop system 
(continuous line- nominal system, dashed line - ±30% gain 

estimation errors) 

IV. CONCLUSION 

In this paper, a novel autotuning technique for designing 

fractional order controllers has been proposed. The 

autotuning procedure is based on imposing a set of three 

performance criteria that refer to a certain gain crossover 

frequency, a certain phase margin, as well as the iso-

damping property. These performance specifications have 

been used considerably and most often in designing 

fractional order controllers, but in the presence of a 

mathematical model of the process. In this paper, similar 

results to the classical tuning techniques for fractional order 

controllers are obtained but in the absence of a process 

model. The efficiency and simplicity of the design is 

demonstrated numerically, through a case study that 

considers a multivariable system. 

Although robust, the simulation results also show a 

considerable amount of interaction, because of the high 

couplings in the multivariable system. Further research 

includes the possibility of using the proposed autotuning 

method for designing fractional order controllers together 

with a steady state decoupling technique to improve the 

closed loop response and reduce interactions. 
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