5,627 research outputs found

    Child support judgments: comparing public policy to the public's policy

    Get PDF
    Any child support regime necessarily makes policy choices about how parental income should be shared between the two parental households. Those choices involve balancing the claims of the child, the claims of the custodial parent for help with the expense of providing for the child, and the claims of the support obligor for autonomy in deciding how to spend his own earnings. That balancing task is complicated by the fact that the child and the custodial parent necessarily share a living standard, so that any child support transfer, large or small, will unavoidably benefit the custodial parent as well as the child. This article reports the findings of an empirical study designed to reveal how the British public believe this balance should be struck. It then compares the public’s preferred policies to the policy choices implicit in the current UK child support schedule. It concludes that there are important gaps between the two, and recommends that consideration be given to amending the current UK law to better align it with the public’s values on these matters

    Random access quantum information processors

    Full text link
    Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access -- the ability of arbitrary qubit pairs to interact directly. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-bit quantum memory, with a single transmon serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. The memory bits are superpositions of vacuum and single-photon states, controlled by a single superconducting transmon coupled to the edge of the array. We selectively stimulate single-photon vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency, producing sidebands resonant with the modes. Utilizing these oscillations for state transfer, we perform a universal set of single- and two-qubit gates between arbitrary pairs of modes, using only the charge and flux bias of the transmon. Further, we prepare multimode entangled Bell and GHZ states of arbitrary modes. The fast and flexible control, achieved with efficient use of cryogenic resources and control electronics, in a scalable architecture compatible with state-of-the-art quantum memories is promising for quantum computation and simulation.Comment: 7 pages, 5 figures, supplementary information ancillary file, 21 page

    Persistence distributions for non gaussian markovian processes

    Full text link
    We propose a systematic method to derive the asymptotic behaviour of the persistence distribution, for a large class of stochastic processes described by a general Fokker-Planck equation in one dimension. Theoretical predictions are compared to simple solvable systems and to numerical calculations. The very good agreement attests the validity of this approach.Comment: 7 pages, 1 figure, to be published in Europhysics Letter

    Developing Biological ISRU: Implications for Life Support and Space Exploration

    Get PDF
    Main findings: 1) supplementing very dilute media for cultivation of CB with analogs of lunar or Martian regolith effectively supported the proliferation of CB; 2) O2 evolution by siderophilic cyanobacteria cultivated in diluted media but supplemented with iron-rich rocks was higher than O2 evolution by same strain in undiluted medium; 3) preliminary data suggest that organic acids produced by CB are involved in iron-rich mineral dissolution; 4) the CB studied can accumulate iron on and in their cells; 4) sequencing of the cyanobacterium JSC-1 genome revealed that this strain possesses molecular features which make it applicable for the cultivation in special photoreactors on Moon and Mars. Conclusion: As a result of pilot studies, we propose, to develop a concept for semi-closed integrated system that uses CB to extract useful elements to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of higher plants

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behaviour

    Full text link
    We consider the dynamics of a periodic chain of N coupled overdamped particles under the influence of noise, in the limit of large N. Each particle is subjected to a bistable local potential, to a linear coupling with its nearest neighbours, and to an independent source of white noise. For strong coupling (of the order N^2), the system synchronises, in the sense that all oscillators assume almost the same position in their respective local potential most of the time. In a previous paper, we showed that the transition from strong to weak coupling involves a sequence of symmetry-breaking bifurcations of the system's stationary configurations, and analysed in particular the behaviour for coupling intensities slightly below the synchronisation threshold, for arbitrary N. Here we describe the behaviour for any positive coupling intensity \gamma of order N^2, provided the particle number N is sufficiently large (as a function of \gamma/N^2). In particular, we determine the transition time between synchronised states, as well as the shape of the "critical droplet", to leading order in 1/N. Our techniques involve the control of the exact number of periodic orbits of a near-integrable twist map, allowing us to give a detailed description of the system's potential landscape, in which the metastable behaviour is encoded
    • …
    corecore