14,044 research outputs found
Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates
We propose a new approach to understand the origin of the pseudogap in the
cuprates, in terms of bosonic entropy. The near-simultaneous softening of a
large number of different -bosons yields an extended range of short-range
order, wherein the growth of magnetic correlations with decreasing temperature
is anomalously slow. These entropic effects cause the spectral weight
associated with the Van Hove singularity (VHS) to shift rapidly and nearly
linearly toward half filling at higher , consistent with a picture of the
VHS driving the pseudogap transition at a temperature . As a
byproduct, we develop an order-parameter classification scheme that predicts
supertransitions between families of order parameters. As one example, we find
that by tuning the hopping parameters, it is possible to drive the cuprates
across a {\it transition between Mott and Slater physics}, where a
spin-frustrated state emerges at the crossover.Comment: 24 pgs, 15 figs + Supp. Material [6pgs, 3 figs]. Major revision of
arXiv:1505.0477
Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional
We discuss self-consistently obtained ground-state electronic properties of
monolayers of graphene and a number of beyond graphene compounds, including
films of transition-metal dichalcogenides (TMDs), using the recently proposed
strongly constrained and appropriately normed (SCAN) meta-generalized gradient
approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA
results are compared with those based on the local density approximation (LDA)
as well as the generalized gradient approximation (GGA). As expected, the GGA
yields expanded lattices and softened bonds in relation to the LDA, but the
SCAN meta-GGA systematically improves the agreement with experiment. Our study
suggests the efficacy of the SCAN functional for accurate modeling of
electronic structures of layered materials in high-throughput calculations more
generally
Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps
Ultracold hybrid ion-atom traps offer the possibility of microscopic
manipulation of quantum coherences in the gas using the ion as a probe.
However, inelastic processes, particularly charge transfer can be a significant
process of ion loss and has been measured experimentally for the Yb ion
immersed in a Rb vapour. We use first-principles quantum chemistry codes to
obtain the potential energy curves and dipole moments for the lowest-lying
energy states of this complex. Calculations for the radiative decay processes
cross sections and rate coefficients are presented for the total decay
processes. Comparing the semi-classical Langevin approximation with the quantum
approach, we find it provides a very good estimate of the background at higher
energies. The results demonstrate that radiative decay mechanisms are important
over the energy and temperature region considered. In fact, the Langevin
process of ion-atom collisions dominates cold ion-atom collisions. For spin
dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole
interaction and the second-order spin-orbit coupling can play important roles,
inducing couplingbetween the spin and the orbital motion. They measured the
spin-relaxing collision rate to be approximately 5 orders of magnitude higher
than the charge-exchange collision rate \cite{kohl13}. Regarding the measured
radiative charge transfer collision rate, we find that our calculation is in
very good agreement with experiment and with previous calculations.
Nonetheless, we find no broad resonances features that might underly a strong
isotope effect. In conclusion, we find, in agreement with previous theory that
the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol.
Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114
Doppler cooling of gallium atoms: 2. Simulation in complex multilevel systems
This paper derives a general procedure for the numerical solution of the
Lindblad equations that govern the coherences arising from multicoloured light
interacting with a multilevel system. A systematic approach to finding the
conservative and dissipative terms is derived and applied to the laser cooling
of gallium. An improved numerical method is developed to solve the
time-dependent master equation and results are presented for transient cooling
processes. The method is significantly more robust, efficient and accurate than
the standard method and can be applied to a broad range of atomic and molecular
systems. Radiation pressure forces and the formation of dynamic dark-states are
studied in the gallium isotope 66Ga.Comment: 15 pages, 8 figure
Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei
An algebraic sp(4) shell model is introduced to achieve a deeper
understanding and interpretation of the properties of pairing-governed 0+
states in medium mass atomic nuclei. The theory, which embodies the simplicity
of a dynamical symmetry approach to nuclear structure, is shown to reproduce
the excitation spectra and fine structure effects driven by proton-neutron
interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure
Large-Scale CO Maps of the Lupus Molecular Cloud Complex
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward
three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV -
trace the column density and temperature of the molecular gas. Comparison with
IR extinction maps from the c2d project requires most of the gas to have a
temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are
roughly consistent with most previous estimates, while the line widths are
higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating
widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the
NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity
gradient across the ridge, are consistent with interaction between the
molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of
the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be
stars, and shows no sign of external influence. Slightly warmer gas around the
core of Lupus IV and a low line width suggest heating by the
Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.Comment: 54 pages, 27 figures, 5 tables. To appear in ApJS. Preprint also
available (with full-size figures) from
http://www.astro.ex.ac.uk/people/nfht/publications.html Datacubes available
from http://www.astro.ex.ac.uk/people/nfht/resources.htm
The Discovery of a Companion to the Very Cool Dwarf Gl~569~B with the Keck Adaptive Optics Facility
We report observations obtained with the Keck adaptive optics facility of the
nearby (d=9.8 pc) binary Gl~569. The system was known to be composed of a cool
primary (dM2) and a very cool secondary (dM8.5) with a separation of 5" (49
Astronomical Units). We have found that Gl~569~B is itself double with a
separation of only 0".1010".002 (1 Astronomical Unit). This detection
demonstrates the superb spatial resolution that can be achieved with adaptive
optics at Keck. The difference in brightness between Gl~569~B and the companion
is 0.5 magnitudes in the J, H and K' bands. Thus, both objects have
similarly red colors and very likely constitute a very low-mass binary system.
For reasonable assumptions about the age (0.12~Gyr--1.0~Gyr) and total mass of
the system (0.09~M--0.15~M), we estimate that the orbital
period is 3 years. Follow-up observations will allow us to obtain an
astrometric orbit solution and will yield direct dynamical masses that can
constrain evolutionary models of very low-mass stars and brown dwarfs
Confirmatory factor analysis of the Test of Performance Strategies (TOPS) among adolescent athletes
The aim of the present study was to examine the factorial validity of the Test of Performance Strategies (TOPS; Thomas et al., 1999) among adolescent athletes using confirmatory factor analysis. The TOPS was designed to assess eight psychological strategies used in competition (i.e. activation, automaticity, emotional control, goal-setting, imagery, negative thinking, relaxation and self-talk,) and eight used in practice (the same strategies except negative thinking is replaced by attentional control). National-level athletes (n = 584) completed the 64-item TOPS during training camps. Fit indices provided partial support for the overall measurement model for the competition items (robust comparative fit index = 0.92, Tucker-Lewis index = 0.88, root mean square error of approximation = 0.05) but minimal support for the training items (robust comparative fit index = 0.86, Tucker-Lewis index = 0.81, root mean square error of approximation = 0.06). For the competition items, the automaticity, goal-setting, relaxation and self-talk scales showed good fit, whereas the activation, emotional control, imagery and negative thinking scales did not. For the practice items, the attentional control, emotional control, goal-setting, imagery and self-talk scales showed good fit, whereas the activation, automaticity and relaxation scales did not. Overall, it appears that the factorial validity of the TOPS for use with adolescents is questionable at present and further development is required
Number counts and clustering properties of bright Distant Red Galaxies in the UKIDSS Ultra Deep Survey Early Data Release
We describe the number counts and spatial distribution of 239 Distant Red
Galaxies (DRGs), selected from the Early Data Release of the UKIDSS Ultra Deep
Survey. The DRGs are identified by their very red infrared colours with
(J-K)AB>1.3, selected over 0.62 sq degree to a 90% completeness limit of
KAB~20.7. This is the first time a large sample of bright DRGs has been studied
within a contiguous area, and we provide the first measurements of their number
counts and clustering. The population shows strong angular clustering,
intermediate between those of K-selected field galaxies and
optical/infrared-selected Extremely Red Galaxies. Adopting the redshift
distributions determined from other recent studies, we infer a high correlation
length of r0~11 h-1 Mpc. Such strong clustering could imply that our galaxies
are hosted by very massive dark matter halos, consistent with the progenitors
of present-day L>L* elliptical galaxies.Comment: 5 pages, 4 figures, revised version accepted to MNRAS.
Higher-resolution figures available from the authors on reques
- …