84 research outputs found
Farmer Participatory Early-Generation Yield Testing of Sorghum in West Africa: Possibilities to Optimize Genetic Gains for Yield in Farmers’ Fields
The effectiveness of on-farm and/or on-station early generation yield testing was examined to maximize the genetic gains for sorghum yield under smallholder famer production conditions in West Africa. On-farm first-stage yield trials (augmented design, 150 genotypes with subsets of 50 genotypes tested per farmer) and second-stage yield trials (replicated α-lattice design, 21 test genotypes) were conducted, as well as on-station α-lattice first- and second-stage trials under contrasting phosphorous conditions. On-farm testing was effective, with yield showing significant genetic variance and acceptable heritabilities (0.56 in first- and 0.61 to 0.83 in second-stage trials). Predicted genetic gains from on-station yield trials were always less than from direct testing on-farm, although on-station trials under low-phosphorus and combined over multiple environments improved selection efficiencies. Modeling alternative designs for on-farm yield testing (augmented, farmer-as-incomplete-block, multiple lattice, and augmented p-rep) indicated that acceptable heritabilities (0.57 to 0.65) could be obtained with all designs for testing 150 progenies in 20 trials and 75 plots per farmer. Ease of implementation and risk of errors would thus be key criteria for choice of design. Integrating results from on-station and on-farm yield testing appeared beneficial as progenies selected both by on-farm and on-station first-stage trials showed higher on-farm yields in second-stage testing
Prima facie reasons to question enclosed intellectual property regimes and favor open-source regimes for germplasm
In principle, intellectual property protections (IPPs) promote and protect important but costly investment in research and development. However, the empirical reality of IPPs has often gone without critical evaluation, and the potential of alternative approaches to lend equal or greater support for useful innovation is rarely considered. In this paper, we review the mounting evidence that the global intellectual property regime (IPR) for germplasm has been neither necessary nor sufficient to generate socially beneficial improvements in crop plants and maintain agrobiodiversity. Instead, based on our analysis, the dominant global IPR appears to have contributed to consolidation in the seed industry while failing to genuinely engage with the potential of alternatives to support social goods such as food security, adaptability, and resilience. The dominant IPR also constrains collaborative and cumulative plant breeding processes that are built upon the work of countless farmers past and present. Given the likely limits of current IPR, we propose that social goods in agriculture may be better supported by alternative approaches, warranting a rapid move away from the dominant single-dimensional focus on encouraging innovation through ensuring monopoly profits to IPP holders
How to Exploit the Digitalization Potential of Business Processes
Process improvement is the most value-adding activity in the business process management (BPM) lifecycle. Despite mature knowledge, many approaches have been criticized to lack guidance on how to put process improvement into practice. Given the variety of emerging digital technologies, organizations not only face a process improvement black box, but also high uncertainty regarding digital technologies. This paper thus proposes a method that supports organizations in exploiting the digitalization potential of their business processes. To achieve this, action design research and situational method engineering were adopted. Two design cycles involving practitioners (i.e., managers and BPM experts) and end-users (i.e., process owners and participants) were conducted. In the first cycle, the method’s alpha version was evaluated by interviewing practitioners from five organizations. In the second cycle, the beta version was evaluated via real-world case studies. In this paper, detailed results of one case study, which was conducted at a semiconductor manufacturer, are included
A Project Portfolio Management Approach to Tacklingthe Exploration/Exploitation Trade-off
Organizational ambidexterity (OA) is an essen-tial capability for surviving in dynamic business environ-ments that advocates the simultaneous engagement inexploration and exploitation. Over the last decades,knowledge on OA has substantially matured, coveringinsights into antecedents, outcomes, and moderators of OA.However, there is little prescriptive knowledge that offersguidance on how to put OA into practice and to tackle thetrade-off between exploration and exploitation. To addressthis gap, the authors adopt the design science researchparadigm and propose an economic decision model asartifact. The decision model assists organizations inselecting and scheduling exploration and exploitation pro-jects to become ambidextrous in an economically reason-able manner. As for justificatory knowledge, the decisionmodel draws from prescriptive knowledge on projectportfolio management and value-based management, andfrom descriptive knowledge related to OA to structure thefield of action. To evaluate the decision model, its designspecification is discussed against theory-backed designobjectives and with industry experts. The paper alsoinstantiates the decision model as a software prototype andapplies the prototype to a case based on real-world data
Meta Modeling for Business Process Improvement
Conducting business process improvement (BPI) initiatives is a topic of high priority for today’s companies. However, performing BPI projects has become challenging. This is due to rapidly changing customer requirements and an increase of inter-organizational business processes, which need to be considered from an end-to-end perspective. In addition, traditional BPI approaches are more and more perceived as overly complex and too resource-consuming in practice. Against this background, the paper proposes a BPI roadmap, which is an approach for systematically performing BPI projects and serves practitioners’ needs for manageable BPI methods. Based on this BPI roadmap, a domain-specific conceptual modeling method (DSMM) has been developed. The DSMM supports the efficient documentation and communication of the results that emerge during the application of the roadmap. Thus, conceptual modeling acts as a means for purposefully codifying the outcomes of a BPI project. Furthermore, a corresponding software prototype has been implemented using a meta modeling platform to assess the technical feasibility of the approach. Finally, the usability of the prototype has been empirically evaluated
- …