1,073 research outputs found

    Integrating soil moisture measurements into pasture growth forecasting in New Zealand's hill country

    Get PDF
    Forecasting pasture growth in hill country landscapes requires information about soil water retention characteristics, which will help to quantify both water uptake, and its percolation below the root zone. Despite the importance of soil moisture data in pasture productivity predictions, current models use low-resolution estimates of water input into their soil water balance equations and plant growth simulations. As a result, they frequently fail to capture the spatial and temporal variability of soil moisture in hill country soils. Wireless Sensor Networks (WSN) are promising in-situ measurement systems for monitoring soil moisture dynamics with high temporal resolution in agricultural soils. This paper presents the deployment of a soil moisture sensing network, utilising WSN technology and multi-sensor probes, to monitor soil water changes over a hill country farm in the northern Wairarapa region of the North Island. Processed capacitance-based raw data was converted to volumetric water content by means of a factory calibration function to assess sensor accuracy and to calculate soil water storage within the pasture root zone. The derived volumetric soil moisture data was examined in terms of its dependence on the variability and influences of hill country landscape characteristics such as aspect. The integration of spatially distributed sensors and multi-depth soil moisture measurements from various hillslope positions showed that slope and aspect exerted a significant impact on soil moisture values. Furthermore, considerable differences were identified in soil water profile responses to significant rainfall events and subsequent soil water redistribution. Initial indications are that high-resolution time series of accurate multi-depth soil moisture measurements collected by a WSN are valuable for investigating root zone water movement. Sensor evaluation and data analysis suggest that these devices and their associated datasets are able to contribute to an improved understanding of drying and wetting cycles and soil moisture variability. Potentially, this will create an opportunity to generate improved pasture growth predictions in pastoral hill country environments

    Dissipative flows of 2D foams

    Full text link
    We analyze the flow of a liquid foam between two plates separated by a gap of the order of the bubble size (2D foam). We concentrate on the salient features of the flow that are induced by the presence, in an otherwise monodisperse foam, of a single large bubble whose size is one order of magnitude larger than the average size. We describe a model suited for numerical simulations of flows of 2D foams made up of a large number of bubbles. The numerical results are successfully compared to analytical predictions based on scaling arguments and on continuum medium approximations. When the foam is pushed inside the cell at a controlled rate, two basically different regimes occur: a plug flow is observed at low flux whereas, above a threshold, the large bubble migrates faster than the mean flow. The detailed characterization of the relative velocity of the large bubble is the essential aim of the present paper. The relative velocity values, predicted both from numerical and from analytical calculations that are discussed here in great detail, are found to be in fair agreement with experimental results

    Aquaplanets, climate sensitivity, and low clouds

    No full text
    Cloud effects have repeatedly been pointed out as the leading source of uncertainty in projections of future climate, yet clouds remain poorly understood and simulated in climate models. Aquaplanets provide a simplified framework for comparing and understanding cloud effects, and how they are partitioned as a function of regime, in large-scale models. This work uses two climate models to demonstrate that aquaplanets can successfully predict a climate model’s sensitivity to an idealized climate change. For both models, aquaplanet climate sensitivity is similar to that of the realistic configuration. Tropical low clouds appear to play a leading role in determining the sensitivity. Regions of large-scale subsidence, which cover much of the tropics, are most directly responsible for the differences between the models. Although cloud effects and climate sensitivity are similar for aquaplanets and realistic configurations, the aquaplanets lack persistent stratocumulus in the tropical atmosphere. This, and an additional analysis of the cloud response in the realistically configured simulations, suggests the representation of shallow (trade wind) cumulus convection, which is ubiquitous in the tropics, is largely responsible for differences in the simulated climate sensitivity of these two models

    The EU and Asia within an evolving global order: what is Europe? Where is Asia?

    Get PDF
    The papers in this special edition are a very small selection from those presented at the EU-NESCA (Network of European Studies Centres in Asia) conference on "the EU and East Asia within an Evolving Global Order: Ideas, Actors and Processes" in November 2008 in Brussels. The conference was the culmination of three years of research activity involving workshops and conferences bringing together scholars from both regions primarily to discuss relations between Europe and Asia, perceptions of Europe in Asia, and the relationship between the European regional project and emerging regional forms in Asia. But although this was the last of the three major conferences organised by the consortium, it in many ways represented a starting point rather than the end; an opportunity to reflect on the conclusions of the first phase of collaboration and point towards new and continuing research agendas for the future

    Spatial distribution of beef cattle on a New Zealand hill country farm: monitoring the use of streams and wet areas

    Get PDF
    Grazing livestock are an important source of contamination of freshwater, particularly when they have direct access to streams. Cattle in particular contribute to riparian habitat deterioration through stream bank destruction and direct defecation and urination in streams. Exclusion of stock or planting of riparian areas, are the most common catchment management methods used to protect waterways. Given the relatively low returns from beef and sheep farming, both of these strategies are very expensive and often logistically prohibitive in steep hill county landscapes. Despite this, policy trends indicate that fencing of streams in agricultural catchments may become mandatory in the future. It is important that we understand how much time cattle spend in and around hill country streams and wet areas (wetlands and hill side seeps), in order to quantify the likely environmental benefits from such policies. The current study examined cattle movement data obtained using Global Positioning System (GPS) collars from experiments undertaken at Massey University’s hill country research farm, Tuapaka, near Palmerston North, to investigate the amount of time cattle spent in and around streams and wet areas. Animal movement data were collected over seven grazing events, in three winter periods (2012, 2013 and 2015). Permanent streams and wet areas were identified using a digital elevation model derived from 1m LiDAR data, aerial RGB images and RTK measurements. Cattle spent 3.3 – 6% (48 – 86 min/day) of their day in streams and wet areas consistently across the 7 data collections. Cattle spent more time in streams and wet areas during the afternoon. There are differences in the median amount of time individual animals spend in non-risk areas. Further research is necessary to evaluate how we can influence the amount of time cattle spend in riparian areas on hill country and how stream bank behaviour varies at different times of the year

    State attachment variability across distressing situations in middle childhood

    Get PDF
    Contemporary research suggests that attachment has both a trait-like, stable component, and a state-like component that varies across contexts. In the current study, we assessed state attachment variability across comparably distressing situations in middle childhood. In two samples, children reported their expectations of maternal support in each situation. Additionally, we administered trait attachment and psychological well-being measures. Results indicated that, overall, children varied in their expectations across situations: more than half of the variance was explained by intra-individual differences across situations. Results revealed two components underlying variability: a Signal-and-Support component reflecting expectations of support-seeking and receiving, and a Back-on-Track component reflecting expectations of stress reduction and comfort. State attachment variability was related to individual differences in trait attachment: children who are more securely attached at the trait level, overall appear to vary less in their state attachment, likely due to their high mean state attachment scores across situations. When the mean state attachment scores are accounted for, more securely attached children seem to vary more, suggesting that their state attachment expectations are more sensitive to contextual fluctuations. Importantly, degree of state attachment variability explained psychological well-being over and above trait attachment

    A comparison of attachment representations to father and mother using the MCAST

    Get PDF
    The aim of the current study was to examine the factorial structure of the Manchester Child Attachment Story Task (MCAST), using a father doll to address the child's attachment representation to father. While the MCAST, a doll story completion task measuring attachment representations in early childhood, has been validated for use with a mother doll, its use for assessing attachment to father is relatively unexplored. Thus, an additional aim was to compare the factorial structure of the child's attachment representation to father and mother, respectively. We analyzed data from 118 first-grade children who underwent counterbalanced administration of the MCAST with a mother and father doll, respectively, within a period of three months. Exploratory factorial analysis revealed similar, three-factor solutions for attachment to father and mother, with a first factor capturing the child's (scripted) knowledge of secure base/safe haven and a second factor reflecting intrusive and conflict behavior. The third factor was different in the father and mother representations, capturing self-care and role-reversal in attachment to father and disorganization in attachment to mother. Findings support the potential usefulness of the MCAST for exploring the father-child relationship and highlight a need for further research on early attachment representations to father

    Periodic and Quasiperiodic Motion of an Elongated Microswimmer in Poiseuille Flow

    Full text link
    We study the dynamics of a prolate spheroidal microswimmer in Poiseuille flow for different flow geometries. When moving between two parallel plates or in a cylindrical microchannel, the swimmer performs either periodic swinging or periodic tumbling motion. Although the trajectories of spherical and elongated swimmers are qualitatively similar, the swinging and tumbling frequency strongly depends on the aspect ratio of the swimmer. In channels with reduced symmetry the swimmers perform quasiperiodic motion which we demonstrate explicitely for swimming in a channel with elliptical cross section

    Phase Bubbles and Spatiotemporal Chaos in Granular Patterns

    Get PDF
    We use inelastic hard sphere molecular dynamics simulations and laboratory experiments to study patterns in vertically oscillated granular layers. The simulations and experiments reveal that {\em phase bubbles} spontaneously nucleate in the patterns when the container acceleration amplitude exceeds a critical value, about 7g7g, where the pattern is approximately hexagonal, oscillating at one-fourth the driving frequency (f/4f/4). A phase bubble is a localized region that oscillates with a phase opposite (differing by π\pi) to that of the surrounding pattern; a localized phase shift is often called an {\em arching} in studies of two-dimensional systems. The simulations show that the formation of phase bubbles is triggered by undulation at the bottom of the layer on a large length scale compared to the wavelength of the pattern. Once formed, a phase bubble shrinks as if it had a surface tension, and disappears in tens to hundreds of cycles. We find that there is an oscillatory momentum transfer across a kink, and this shrinking is caused by a net collisional momentum inward across the boundary enclosing the bubble. At increasing acceleration amplitudes, the patterns evolve into randomly moving labyrinthian kinks (spatiotemporal chaos). We observe in the simulations that f/3f/3 and f/6f/6 subharmonic patterns emerge as primary instabilities, but that they are unstable to the undulation of the layer. Our experiments confirm the existence of transient f/3f/3 and f/6f/6 patterns.Comment: 6 pages, 12 figures, submitted to Phys. Rev. E on July 1st, 2001. for better quality figures, visit http://chaos.ph.utexas.edu/research/moo
    corecore