682 research outputs found

    Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground‐based TCCON data and model calculations

    Get PDF
    We report new short-wave infrared (SWIR) column retrievals of atmospheric methane (X_(CH4)) from the Japanese Greenhouse Gases Observing SATellite (GOSAT) and compare observed spatial and temporal variations with correlative ground-based measurements from the Total Carbon Column Observing Network (TCCON) and with the global 3-D GEOS-Chem chemistry transport model. GOSAT X_(CH4) retrievals are compared with daily TCCON observations at six sites between April 2009 and July 2010 (Bialystok, Park Falls, Lamont, Orleans, Darwin and Wollongong). GOSAT reproduces the site-dependent seasonal cycles as observed by TCCON with correlations typically between 0.5 and 0.7 with an estimated single-sounding precision between 0.4–0.8%. We find a latitudinal-dependent difference between the X_(CH4) retrievals from GOSAT and TCCON which ranges from 17.9 ppb at the most northerly site (Bialystok) to −14.6 ppb at the site with the lowest latitude (Darwin). We estimate that the mean smoothing error difference included in the GOSAT to TCCON comparisons can account for 15.7 to 17.4 ppb for the northerly sites and for 1.1 ppb at the lowest latitude site. The GOSAT X_(CH4) retrievals agree well with the GEOS-Chem model on annual (August 2009 – July 2010) and monthly timescales, capturing over 80% of the zonal variability. Differences between model and observed X_(CH4) are found over key source regions such as Southeast Asia and central Africa which will be further investigated using a formal inverse model analysis

    Forest chimpanzees (Pan troglodytes verus) remember the location of numerous fruit trees

    Get PDF
    It is assumed that spatial memory contributes crucially to animal cognition since animals’ habitats entail a large number of dispersed and unpredictable food sources. Spatial memory has been investigated under controlled conditions, with different species showing and different conditions leading to varying performance levels. However, the number of food sources investigated is very low compared to what exists under natural conditions, where food resources are so abundant that it is difficult to precisely identify what is available. By using a detailed botanical map containing over 12,499 trees known to be used by the Taï chimpanzees, we created virtual maps of all productive fruit trees to simulate potential strategies used by wild chimpanzees to reach resources without spatial memory. First, we simulated different assumptions concerning the chimpanzees’ preference for a particular tree species, and, second, we varied the detection field to control for the possible use of smell to detect fruiting trees. For all these assumptions, we compared simulated distance travelled, frequencies of trees visited, and revisit rates with what we actually observed in wild chimpanzees. Our results show that chimpanzees visit rare tree species more frequently, travel shorter distances to reach them, and revisit the same trees more often than if they had no spatial memory. In addition, we demonstrate that chimpanzees travel longer distances to reach resources where they will eat for longer periods of time, and revisit resources more frequently where they ate for a long period of time during their first visit. Therefore, this study shows that forest chimpanzees possess a precise spatial memory which allows them to remember the location of numerous resources and use this information to select the most attractive resources

    Additive opportunistic capture explains group hunting benefits in African wild dogs

    Get PDF
    African wild dogs (Lycaon pictus) are described as highly collaborative endurance pursuit hunters based on observations derived primarily from the grass plains of East Africa. However, the remaining population of this endangered species mainly occupies mixed woodland savannah where hunting strategies appear to differ from those previously described. We used high-resolution GPS and inertial technology to record fine-scale movement of all members of a single pack of six adult African wild dogs in northern Botswana. The dogs used multiple short-distance hunting attempts with a low individual kill rate (15.5%), but high group feeding rate due to the sharing of prey. Use of high-level cooperative chase strategies (coordination and collaboration) was not recorded. In the mixed woodland habitats typical of their current range, simultaneous, opportunistic, short-distance chasing by dogs pursuing multiple prey (rather than long collaborative pursuits of single prey by multiple individuals) could be the key to their relative success in these habitats

    The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO₂ and CH₄ retrieval algorithm products with measurements from the TCCON

    Get PDF
    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO₂, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4–2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH₄, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH₄ precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively

    First GIS analysis of modern stone tools used by wild chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa

    Get PDF
    Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record.Leverhulme Trust [IN-052]; MEXT [20002001, 24000001]; JSPS-U04-PWS; FCT-Portugal [SFRH/BD/36169/2007]; Wenner-Gren Foundation for Anthropological Researc

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    GreenHouse gas Observations of the Stratosphere and Troposphere (GHOST): an airborne shortwave-infrared spectrometer for remote sensing of greenhouse gases

    Get PDF
    GHOST is a novel, compact shortwave-infrared grating spectrometer, designed for remote sensing of tropospheric columns of greenhouse gases (GHGs) from an airborne platform. It observes solar radiation at medium to high spectral resolution (better than 0.3&thinsp;nm), which has been reflected by the Earth's surface using similar methods to those used by polar-orbiting satellites such as the JAXA GOSAT mission, NASA's OCO-2, and the Copernicus Sentinel-5 Precursor. By using an original design comprising optical fibre inputs along with a single diffraction grating and detector array, GHOST is able to observe CO2 absorption bands centred around 1.61 and 2.06&thinsp;”m (the same wavelength regions used by OCO-2 and GOSAT) whilst simultaneously measuring CH4 absorption at 1.65&thinsp;”m (also observed by GOSAT) and CH4 and CO at 2.30&thinsp;”m (observed by Sentinel-5P). With emissions expected to become more concentrated towards city sources as the global population residing in urban areas increases, there emerges a clear requirement to bridge the spatial scale gap between small-scale urban emission sources and global-scale GHG variations. In addition to the benefits achieved in spatial coverage through being able to remotely sense GHG tropospheric columns from an aircraft, the overlapping spectral ranges and comparable spectral resolutions mean that GHOST has unique potential for providing validation opportunities for these platforms, particularly over the ocean, where ground-based validation measurements are not available. In this paper we provide an overview of the GHOST instrument, calibration, and data processing, demonstrating the instrument's performance and suitability for GHG remote sensing. We also report on the first GHG observations made by GHOST during its maiden science flights on board the NASA Global Hawk unmanned aerial vehicle, which took place over the eastern Pacific Ocean in March 2015 as part of the CAST/ATTREX joint Global Hawk flight campaign.</p
    • 

    corecore