185 research outputs found

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    MicroRNA interactome analysis predicts post-transcriptional regulation of ADRB2 and PPP3R1 in the hypercholesterolemic myocardium

    Get PDF
    Little is known about the molecular mechanism including microRNAs (miRNA) in hypercholesterolemia-induced cardiac dysfunction. We aimed to explore novel hypercholesterolemia-induced pathway alterations in the heart by an unbiased approach based on miRNA omics, target prediction and validation. With miRNA microarray we identified forty-seven upregulated and ten downregulated miRNAs in hypercholesterolemic rat hearts compared to the normocholesterolemic group. Eleven mRNAs with at least 4 interacting upregulated miRNAs were selected by a network theoretical approach, out of which 3 mRNAs (beta-2 adrenergic receptor [Adrb2], calcineurin B type 1 [Ppp3r1] and calcium/calmodulin-dependent serine protein kinase [Cask]) were validated with qRT-PCR and Western blot. In hypercholesterolemic hearts, the expression of Adrb2 mRNA was significantly decreased. ADRB2 and PPP3R1 protein were significantly downregulated in hypercholesterolemic hearts. The direct interaction of Adrb2 with upregulated miRNAs was demonstrated by luciferase reporter assay. Gene ontology analysis revealed that the majority of the predicted mRNA changes may contribute to the hypercholesterolemia-induced cardiac dysfunction. In summary, the present unbiased target prediction approach based on global cardiac miRNA expression profiling revealed for the first time in the literature that both the mRNA and protein product of Adrb2 and PPP3R1 protein are decreased in the hypercholesterolemic heart

    MTar: a computational microRNA target prediction architecture for human transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play an essential task in gene regulatory networks by inhibiting the expression of target mRNAs. As their mRNA targets are genes involved in important cell functions, there is a growing interest in identifying the relationship between miRNAs and their target mRNAs. So, there is now a imperative need to develop a computational method by which we can identify the target mRNAs of existing miRNAs. Here, we proposed an efficient machine learning model to unravel the relationship between miRNAs and their target mRNAs.</p> <p>Results</p> <p>We present a novel computational architecture MTar for miRNA target prediction which reports 94.5% sensitivity and 90.5% specificity. We identified 16 positional, thermodynamic and structural parameters from the wet lab proven miRNA:mRNA pairs and MTar makes use of these parameters for miRNA target identification. It incorporates an Artificial Neural Network (ANN) verifier which is trained by wet lab proven microRNA targets. A number of hitherto unknown targets of many miRNA families were located using MTar. The method identifies all three potential miRNA targets (5' seed-only, 5' dominant, and 3' canonical) whereas the existing solutions focus on 5' complementarities alone.</p> <p>Conclusion</p> <p>MTar, an ANN based architecture for identifying functional regulatory miRNA-mRNA interaction using predicted miRNA targets. The area of target prediction has received a new momentum with the function of a thermodynamic model incorporating target accessibility. This model incorporates sixteen structural, thermodynamic and positional features of residues in miRNA: mRNA pairs were employed to select target candidates. So our novel machine learning architecture, MTar is found to be more comprehensive than the existing methods in predicting miRNA targets, especially human transcritome.</p

    Quantification of miRNA-mRNA Interactions

    Get PDF
    miRNAs are small RNA molecules (′ 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO)

    SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners

    Get PDF
    Background: The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology. Results: We have developed a web-based tool ‘‘Sequence-based Protein Partners Search’ ’ (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server. Conclusions: SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public a

    Pseudorabies Virus Infected Porcine Epithelial Cell Line Generates a Diverse Set of Host MicroRNAs and a Special Cluster of Viral MicroRNAs

    Get PDF
    Pseudorabies virus (PRV) belongs to Alphaherpesvirinae subfamily that causes huge economic loss in pig industry worldwide. It has been recently demonstrated that many herpesviruses encode microRNAs (miRNAs), which play crucial roles in viral life cycle. However, the knowledge about PRV-encoded miRNAs is still limited. Here, we report a comprehensive analysis of both viral and host miRNA expression profiles in PRV-infected porcine epithelial cell line (PK-15). Deep sequencing data showed that the ∼4.6 kb intron of the large latency transcript (LLT) functions as a primary microRNA precursor (pri-miRNA) that encodes a cluster of 11 distinct miRNAs in the PRV genome, and 209 known and 39 novel porcine miRNAs were detected. Viral miRNAs were further confirmed by stem-loop RT-PCR and northern blot analysis. Intriguingly, all of these viral miRNAs exhibited terminal heterogeneity both at the 5′ and 3′ ends. Seven miRNA genes produced mature miRNAs from both arms and two of the viral miRNA genes showed partially overlapped in their precursor regions. Unexpectedly, a terminal loop-derived small RNA with high abundance and one special miRNA offset RNA (moRNA) were processed from a same viral miRNA precursor. The polymorphisms of viral miRNAs shed light on the complexity of host miRNA-processing machinery and viral miRNA-regulatory mechanism. The swine genes and PRV genes were collected for target prediction of the viral miRNAs, revealing a complex network formed by both host and viral genes. GO enrichment analysis of host target genes suggests that PRV miRNAs are involved in complex cellular pathways including cell death, immune system process, metabolic pathway, indicating that these miRNAs play significant roles in virus-cells interaction of PRV and its hosts. Collectively, these data suggest that PRV infected epithelial cell line generates a diverse set of host miRNAs and a special cluster of viral miRNAs, which might facilitate PRV replication in cells

    Mutations in Radial Spoke Head Genes and Ultrastructural Cilia Defects in East-European Cohort of Primary Ciliary Dyskinesia Patients

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial spoke head (RSPH) proteins, elements of the ciliary ultrastructure, have been recently described. However, the relative involvement of RSPH genes in PCD pathogenesis remained unknown, due to a small number of PCD families examined for mutations in these genes. The purpose of this study was to estimate the involvement of RSPH4A and RSPH9 in PCD pathogenesis among East Europeans (West Slavs), and to shed more light on ultrastructural ciliary defects caused by mutations in these genes. The coding sequences of RSPH4A and RSPH9 were screened in PCD patients from 184 families, using single strand conformational polymorphism analysis and sequencing. Two previously described (Q109X; R490X) and two new RSPH4A mutations (W356X; IVS3_2–5del), in/around exons 1 and 3, were identified; no mutations were found in RSPH9. We estimate that mutations in RSPH4A, but not in RSPH9, are responsible for 2–3% of cases in the East European PCD population (4% in PCD families without situs inversus; 11% in families preselected for microtubular defects). Analysis of the SNP-haplotype background provided insight into the ancestry of repetitively found mutations (Q109X; R490X; IVS3_2–5del), but further studies involving other PCD cohorts are required to elucidate whether these mutations are specific for Slavic people or spread among other European populations. Ultrastructural defects associated with the mutations were analyzed in the transmission electron microscope images; almost half of the ciliary cross-sections examined in patients with RSPH4A mutations had the microtubule transposition phenotype (9+0 and 8+1 pattern). While microtubule transposition was a prevalent ultrastructural defect in cilia from patients with RSPH4A mutations, similar defects were also observed in PCD patients with mutations in other genes
    corecore