1,295 research outputs found

    Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-Dimensional Calculations

    Get PDF
    We present results from the first three-dimensional calculations ever to follow the collapse of a molecular cloud core (~ 10^{-18} g cm^{-3}) to stellar densities (> 0.01 g cm^{-3}). The calculations resolve structures over 7 orders of magnitude in spatial extent (~ 5000 AU - 0.1 R_\odot), and over 17 orders of magnitude in density contrast. With these calculations, we consider whether fragmentation to form a close binary stellar system can occur during the second collapse phase. We find that, if the quasistatic core that forms before the second collapse phase is dynamically unstable to the growth of non-axisymmetric perturbations, the angular momentum extracted from the central regions of the core, via gravitational torques, is sufficient to prevent fragmentation and the formation of a close binary during the subsequent second collapse.Comment: ApJ Letters, in press (will appear in Nov 20 issue; available from the ApJ Rapid Release web page). 7 pages, incl. 5 figures. Also available at http://www.mpia-hd.mpg.de/theory/bat

    The effect of magnetic fields on star cluster formation

    Get PDF
    We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal MHD. The collapse of the cloud is computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma beta < 1 the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically-supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density structure aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetised runs, leading to up to a 75% reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetised runs due to the reduction in the importance of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version with high-res figures + movies available from http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm

    Competitive accretion in embedded stellar cluster

    Get PDF
    We investigate the physics of gas accretion in young stellar clusters. Accretion in clusters is a dynamic phenomenon as both the stars and the gas respond to the same gravitational potential. Accretion rates are highly non-uniform with stars nearer the centre of the cluster, where gas densities are higher, accreting more than others. This competitive accretion naturally results in both initial mass segregation and a spectrum of stellar masses. Accretion in gas-dominated clusters is well modelled using a tidal-lobe radius instead of the commonly used Bondi-Hoyle accretion radius. This works as both the stellar and gas velocities are under the influence of the same gravitational potential and are thus comparable. The low relative velocity that results means that the tidal radius is smaller than the Bondi-Hoyle radius in these systems. In contrast, when the stars dominate the potential and are virialised, the Bondi-Hoyle radius is smaller than the tidal radius and thus Bondi-Hoyle accretion is a better fit to the accretion rates.Comment: 11 pages, 11 figures, MNRAS in pres

    Astrometric signatures of self-gravitating protoplanetary discs

    Full text link
    We use high resolution numerical simulations to study whether gravitational instabilities within circumstellar discs can produce astrometrically detectable motion of the central star. For discs with masses of M_disc = 0.1 M_star, which are permanantly stable against fragmentation, we find that the magnitude of the astrometric signal depends upon the efficiency of disc cooling. Short cooling times produce prominent filamentary spiral structures in the disc, and lead to stellar motions that are potentially observable with future high precision astrometric experiments. For a disc that is marginally unstable within radii of \~10 au, we estimate astrometric displacements of 10-100 microarcsec on decade timescales for a star at a distance of 100 pc. The predicted displacement is suppressed by a factor of several in more stable discs in which the cooling time exceeds the local dynamical time by an order of magnitude. We find that the largest contribution comes from material in the outer regions of the disc and hence, in the most pessimistic scenario, the stellar motions caused by the disc could confuse astrometric searches for low mass planets orbiting at large radii. They are, however, unlikely to present any complications in searches for embedded planets orbiting at small radii, relative to the disc size, or Jupiter mass planets or greater orbiting at large radii.Comment: 6 pages, 9 figures, accepted for publication in MNRA

    Formation of the First Supermassive Black Holes

    Full text link
    We consider the physical conditions under which supermassive black holes could have formed inside the first galaxies. Our SPH simulations indicate that metal-free galaxies with a virial temperature ~10^4 K and with suppressed H2 formation (due to an intergalactic UV background) tend to form a binary black hole system which contains a substantial fraction (>10%) of the total baryonic mass of the host galaxy. Fragmentation into stars is suppressed without substantial H2 cooling. Our simulations follow the condensation of ~5x10^6 M_sun around the two centers of the binary down to a scale of < 0.1pc. Low-spin galaxies form a single black hole instead. These early black holes lead to quasar activity before the epoch of reionization. Primordial black hole binaries lead to the emission of gravitational radiation at redshifts z>10 that would be detectable by LISA.Comment: 11 pages, 9 figures, revised version, ApJ in press (October 10, 2003

    Are there brown dwarfs in globular clusters?

    Full text link
    We present an analytical method for constraining the substellar initial mass function in globular clusters, based on the observed frequency of transit events. Globular clusters typically have very high stellar densities where close encounters are relatively common, and thus tidal capture can occur to form close binary systems. Encounters between main sequence stars and lower-mass objects can result in tidal capture if the mass ratio is > 0.01. If brown dwarfs exist in significant numbers, they too will be found in close binaries, and some fraction of their number should be revealed as they transit their stellar companions. We calculate the rate of tidal capture of brown dwarfs in both segregated and unsegregated clusters, and find that the tidal capture is more likely to occur over an initial relaxation time before equipartition occurs. The lack of any such transits in recent HST monitoring of 47 Tuc implies an upper limit on the frequency of brown dwarfs (< 15 % relative to stars) which is significantly below that measured in the galactic field and young clusters.Comment: MNRAS in pres

    Schedulability Analysis for Multi-Core Systems Accounting for Resource Stress and Sensitivity

    Get PDF
    Timing verification of multi-core systems is complicated by contention for shared hardware resources between co-running tasks on different cores. This paper introduces the Multi-core Resource Stress and Sensitivity (MRSS) task model that characterizes how much stress each task places on resources and how much it is sensitive to such resource stress. This model facilitates a separation of concerns, thus retaining the advantages of the traditional two-step approach to timing verification (i.e. timing analysis followed by schedulability analysis). Response time analysis is derived for the MRSS task model, providing efficient context-dependent and context independent schedulability tests for both fixed priority preemptive and fixed priority non-preemptive scheduling. Dominance relations are derived between the tests, and proofs of optimal priority assignment provided. The MRSS task model is underpinned by a proof-of-concept industrial case study

    Properties of hierarchically forming star clusters

    Full text link
    We undertake a systematic analysis of the early (< 0.5 Myr) evolution of clustering and the stellar initial mass function in turbulent fragmentation simulations. These large scale simulations for the first time offer the opportunity for a statistical analysis of IMF variations and correlations between stellar properties and cluster richness. The typical evolutionary scenario involves star formation in small-n clusters which then progressively merge; the first stars to form are seeds of massive stars and achieve a headstart in mass acquisition. These massive seeds end up in the cores of clusters and a large fraction of new stars of lower mass is formed in the outer parts of the clusters. The resulting clusters are therefore mass segregated at an age of 0.5 Myr, although the signature of mass segregation is weakened during mergers. We find that the resulting IMF has a smaller exponent (alpha=1.8-2.2) than the Salpeter value (alpha=2.35). The IMFs in subclusters are truncated at masses only somewhat larger than the most massive stars (which depends on the richness of the cluster) and an universal upper mass limit of 150 Msun is ruled out. We also find that the simulations show signs of the IGIMF effect proposed by Weidner & Kroupa, where the frequency of massive stars is suppressed in the integrated IMF compared to the IMF in individual clusters. We identify clusters through the use of a minimum spanning tree algorithm which allows easy comparison between observational survey data and the predictions of turbulent fragmentation models. In particular we present quantitative predictions regarding properties such as cluster morphology, degree of mass segregation, upper slope of the IMF and the relation between cluster richness and maximum stellar mass. [abridged]Comment: 21 Pages, 25 Figure
    • …
    corecore