3 research outputs found

    Lateral orbitofrontal cortex anticipates choices and integrates prior with current information

    Get PDF
    Adaptive behavior requires integrating prior with current information to anticipate upcoming events. Brain structures related to this computation should bring relevant signals from the recent past into the present. Here we report that rats can integrate the most recent prior information with sensory information, thereby improving behavior on a perceptual decision-making task with outcome-dependent past trial history. We find that anticipatory signals in the orbitofrontal cortex about upcoming choice increase over time and are even present before stimulus onset. These neuronal signals also represent the stimulus and relevant second-order combinations of past state variables. The encoding of choice, stimulus and second-order past state variables resides, up to movement onset, in overlapping populations. The neuronal representation of choice before stimulus onset and its build-up once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming immediate prior and stimulus information into choices using a compact state-space representation

    Adaptation in the visual cortex: a case for probing neuronal populations with natural stimuli

    No full text
    The perception of, and neural responses to, sensory stimuli in the present are influenced by what has been observed in the past—a phenomenon known as adaptation. We focus on adaptation in visual cortical neurons as a paradigmatic example. We review recent work that represents two shifts in the way we study adaptation, namely (i) going beyond single neurons to study adaptation in populations of neurons and (ii) going beyond simple stimuli to study adaptation to natural stimuli. We suggest that efforts in these two directions, through a closer integration of experimental and modeling approaches, will enable a more complete understanding of cortical processing in natural environments

    Asymmetric architecture is non-random and repeatable in a bird’s nests

    No full text
    corecore