857 research outputs found

    Partial ferromagnetic ordering and indirect exchange interaction in spatially anisotropic kagome antiferromagnet Cs_2Cu_3CeF_{12}

    Full text link
    We report the crystal structure and unconventional magnetic ordering of Cs_2Cu_3CeF_{12}, which is composed of buckled kagome lattice of Cu^{2+} ions. The exchange network in the buckled kagome lattice is fairly anisotropic, so that the present spin system can be divided into two subsystems: alternating Heisenberg chains with strong antiferromagnetic exchange interactions and dangling spins. Although the direct exchange interactions between neighboring spins were found to be all antiferromagnetic, ferromagnetic magnetic ordering of the dangling spins was observed. Magnetization exhibits a plateau at one-third of the saturation magnetization. These observations can be understood in terms of the indirect interaction between dangling spins mediated by the chain spin.Comment: 4 pages, 3 figure

    Dynamical mass generation in quantum field theory : some methods with application to the Gross-Neveu model and Yang-Mills theory

    Full text link
    We introduce some techniques to investigate dynamical mass generation. The Gross-Neveu model (GN) is used as a toy model, because the GN mass gap is exactly known, making it possible to check reliability of the various methods. Very accurate results are obtained. Also application to SU(N) Yang-Mills (YM) is discussed.Comment: 8 LaTeX2e pages, uses Kluwer class file crckbked.cls. Kluwer package included. To appear in: Proceedings of the NATO Advanced Research Workshop on "Confinement, Topology, and other Non-Perturbative Aspects of QCD", Stara Lesna, Slovakia, 21-27 jan 200

    Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields

    Full text link
    Crossed magnetic field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both (crossed) magnetic field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O (YBCO) single domains that had been pre-magnetized with the applied field parallel to their shortest direction (i.e. the c-axis) and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pick-up coils, a Hall probe placed against the sample surface and Magneto-Optical Imaging (MOI). We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross-section. It is also shown that the model does not predict any saturation of the magnetic induction, even after a large number (~ 100) of transverse field cycles. These features are shown to be consistent with the experimental data.Comment: 41 pages, 9 figures, accepted in Phys. Rev. B Changes : 8 references added, a few precisions added, some typos correcte

    Compact lattice formulation of Cho-Faddeev-Niemi decomposition: gluon mass generation and infrared Abelian dominance

    Get PDF
    This paper complements a new lattice formulation of SU(2) Yang-Mills theory written in terms of new variables in a compact form proposed in the previous paper. The new variables used in the formulation were once called the Cho--Faddeev--Niemi or Cho--Faddeev--Niemi--Shabanov decomposition. Our formulation enables us to explain the infrared ``Abelian'' dominance, in addition to magnetic monopole dominance shown in the previous paper, in the gauge invariant way without relying on the specific gauge fixing called the maximal Abelian gauge used in the conventional investigations. In this paper, especially, we demonstrate by numerical simulations that gluon degrees of freedom other than the ``Abelian'' part acquire the mass to be decoupled in the low-energy region leading to the infrared Abelian dominance.Comment: 14 pages 5 figures,[v2]explanations added and improved, a reference adde

    Magnetic-field dependence of the critical currents in a periodic coplanar array of narrow superconducting strip

    Full text link
    We calculate the magnetic-field dependence of the critical current due to both geometrical edge barriers and bulk pinning in a periodic coplanar array of narrow superconducting strips. We find that in zero or low applied magnetic fields the critical current can be considerably enhanced by the edge barriers, but in modest applied magnetic fields the critical current reduces to that due to bulk pinning alone.Comment: 23 pages, 7 figure

    Statistical Inference in a Directed Network Model with Covariates

    Get PDF
    Networks are often characterized by node heterogeneity for which nodes exhibit different degrees of interaction and link homophily for which nodes sharing common features tend to associate with each other. In this paper, we propose a new directed network model to capture the former via node-specific parametrization and the latter by incorporating covariates. In particular, this model quantifies the extent of heterogeneity in terms of outgoingness and incomingness of each node by different parameters, thus allowing the number of heterogeneity parameters to be twice the number of nodes. We study the maximum likelihood estimation of the model and establish the uniform consistency and asymptotic normality of the resulting estimators. Numerical studies demonstrate our theoretical findings and a data analysis confirms the usefulness of our model.Comment: 29 pages. minor revisio

    On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge

    Get PDF
    Recent work claimed that the off-diagonal gluons (and ghosts) in pure Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a dynamical mass through an off-diagonal ghost condensate. This condensation takes place due to a quartic ghost interaction, unavoidably present in MAG for renormalizability purposes. The off-diagonal mass can be seen as evidence for Abelian dominance. We discuss why ghost condensation of the type discussed in those works cannot be the reason for the off-diagonal mass and Abelian dominance, since it results in a tachyonic mass. We also point out what the full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex

    Off-diagonal Gluon Mass Generation and Infrared Abelian Dominance in the Maximally Abelian Gauge in Lattice QCD

    Full text link
    We study effective mass generation of off-diagonal gluons and infrared abelian dominance in the maximally abelian (MA) gauge. Using the SU(2) lattice QCD, we investigate the propagator and the effective mass of the gluon field in the MA gauge with the U(1)3_3 Landau gauge fixing. The Monte Carlo simulation is performed on the 123×2412^3 \times 24 lattice with 2.2β2.42.2 \le \beta \le 2.4, and also on the 16416^4 and 20420^4 lattices with 2.3β2.42.3 \le \beta \le 2.4. In the MA gauge, the diagonal gluon component Aμ3A_\mu^3 shows long-range propagation, and infrared abelian dominance is found for the gluon propagator. In the MA gauge, the off-diagonal gluon component Aμ±A_\mu^\pm behaves as a massive vector boson with the effective mass Moff1.2M_{\rm off} \simeq 1.2 GeV in the region of r \gsim 0.2 fm, and its propagation is limited within short range. We conjecture that infrared abelian dominance can be interpreted as infrared inactivity of the off-diagonal gluon due to its large mass generation induced by the MA gauge fixing.Comment: 31 pages, 7 figures and 2 tables included, changed title, corrected typos and updated reference, accepted for publication in Physical Review

    Filming a live cell by scanning electrochemical microscopy: label-free imaging of the dynamic morphology in real time

    Get PDF
    The morphology of a live cell reflects the organization of the cytoskeleton and the healthy status of the cell. We established a label-free platform for monitoring the changing morphology of live cells in real time based on scanning electrochemical microscopy (SECM). The dynamic morphology of a live human bladder cancer cell (T24) was revealed by time-lapse SECM with dissolved oxygen in the medium solution as the redox mediator. Detailed local movements of cell membrane were presented by time-lapse cross section lines extracted from time-lapse SECM. Vivid dynamic morphology is presented by a movie made of time-lapse SECM images. The morphological change of the T24 cell by non-physiological temperature is in consistence with the morphological feature of early apoptosis. To obtain dynamic cellular morphology with other methods is difficult. The non-invasive nature of SECM combined with high resolution realized filming the movements of live cells

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
    corecore