2,746 research outputs found

    Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation

    Get PDF
    BACKGROUND: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. RESULTS: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. CONCLUSIONS: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy

    Copy Number Variation of Age-Related Macular Degeneration Relevant Genes in the Korean Population

    Get PDF
    PURPOSE: Studies that analyzed single nucleotide polymorphisms (SNP) in various genes have shown that genetic factors are strongly associated with age-related macular degeneration (AMD) susceptibility. Copy number variation (CNV) may be an additional type of genetic variation that contributes to AMD pathogenesis. This study investigated CNV in 4 AMD-relevant genes in Korean AMD patients and control subjects. METHODS: Four CNV candidate regions located in AMD-relevant genes (VEGFA, ARMS2/HTRA1, CFH and VLDLR), were selected based on the outcomes of our previous study which elucidated common CNVs in the Asian populations. Real-time PCR based TaqMan Copy Number Assays were performed on CNV candidates in 273 AMD patients and 257 control subjects. RESULTS: The predicted copy number (PCN, 0, 1, 2 or 3+) of each region was called using the CopyCaller program. All candidate genes except ARMS2/HTRA1 showed CNV in at least one individual, in which losses of VEGFA and VLDLR represent novel findings in the Asian population. When the frequencies of PCN were compared, only the gain in VLDLR showed significant differences between AMD patients and control subjects (p = 0.025). Comparisons of the raw copy values (RCV) revealed that 3 of 4 candidate genes showed significant differences (2.03 vs. 1.92 for VEGFA, p<0.01; 2.01 vs. 1.97 for CFH, p<0.01; 1.97 vs. 2.01, p<0.01 for ARMS2/HTRA1). CONCLUSION: CNVs located in AMD-relevant genes may be associated with AMD susceptibility. Further investigations encompassing larger patient cohorts are needed to elucidate the role of CNV in AMD pathogenesis

    Sub-sampled dictionaries for coarse-to-fine sparse representation-based human action recognition

    Get PDF
    Automatic human action recognition is a core functionality of systems for video surveillance and human-object interaction. However, the diverse nature of human actions and the noisy nature of most video content make it difficult to achieve effective human action recognition. To overcome the aforementioned problems, Sparse Representation (SR) has recently attracted substantial research attention. However, although SR-based approaches have proven to be reasonably effective, the computational complexity of the testing stage prohibits their usage by applications requiring support for real-time operation and a vast number of human action classes. In this paper, we propose a novel method for human action recognition, leveraging coarse-to-fine sparse representations that have been obtained through dictionary sub-sampling. Comparative experimental results obtained for the UCF50 dataset demonstrate that the proposed method is able to achieve efficient human action recognition, at no substantial loss in recognition accuracy

    A Novel Pinkish-White Flower Color Variant Is Caused by a New Allele of Flower Color Gene W1 in Wild Soybean (Glycine soja)

    Get PDF
    The enzyme flavonoid 3',5'-hydroxylase (F3'5'H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3'5'H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower's pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A(304)S) in a highly conserved SRS4 domain of F3'5'H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3'5'H activity rather than non-functional activity, which thereby results in its pinkish-white color
    corecore