1,365 research outputs found

    High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Get PDF
    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi0.5Sb1.5Te3 or n-type Bi2Te2.7Se0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively

    The effects of repeated administrations of MK-801 on ERK and GSK-3beta signalling pathways in the rat frontal cortex

    Get PDF
    Repeated administrations of NMDA receptor antagonists induce behavioural changes which resemble the symptoms of schizophrenia in animals. ERK and GSK-3beta associated signalling pathways have been implicated in the pathogenesis of psychosis and in the action mechanisms of various psychotropic agents. Here, we observed the phosphorylations of ERK and GSK-3beta and related molecules in the rat frontal cortex after repeated intraperitoneal injections of MK-801, over periods of 1, 5, and 10 d. Repeated treatment with 0.5, 1, and 2 mg/kg MK-801 increased the phosphorylation levels of the MEK-ERK-p90RSK and Akt-GSK-3beta pathways and concomitantly and significantly increased CREB phosphorylation in the rat frontal cortex. However, single MK-801 treatment did not induce these significant changes. In addition, the immunoreactivities of HSP72, Bax, and PARP were not altered, which suggests that neuronal damage may not occur in the rat frontal cortex in response to chronic MK-801 treatment. These findings suggest that chronic exposure to MK-801 may induce pro-survival and anti-apoptotic activity without significant neuronal damage in the rat frontal cortex. Moreover, this adaptive change might be associated with the psychotomimetic action of MK-801

    Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains

    Get PDF
    Low-density lipoprotein receptor-related protein 6 (LRP6) is a coreceptor of the beta -catenin-dependent Wnt signaling pathway. The LRP6 ectodomain binds Wnt proteins, as well as Wnt inhibitors such as sclerostin (SOST), which negatively regulates Wnt signaling in osteocytes. Although LRP6 ectodomain 1 (E1) is known to interact with SOST, several unresolved questions remain, such as the reason why SOST binds to LRP6 E1E2 with higher affinity than to the E1 domain alone. Here, we present the crystal structure of the LRP6 E1E2-SOST complex with two interaction sites in tandem. The unexpected additional binding site was identified between the C-terminus of SOST and the LRP6 E2 domain. This interaction was confirmed by in vitro binding and cell-based signaling assays. Its functional significance was further demonstrated in vivo using Xenopus laevis embryos. Our results provide insights into the inhibitory mechanism of SOST on Wnt signaling. The low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the beta -catenin-dependent Wnt signaling pathway and interacts with the Wnt inhibitor sclerostin (SOST). Here the authors present the crystal structure of SOST in complex with the LRP6 E1E2 ectodomain construct, which reveals that the SOST C-terminus binds to the LRP6 E2 domain, and further validate this binding site with in vitro and in vivo experiments.Y

    AKT1 Gene Polymorphisms and Obstetric Complications in the Patients with Schizophrenia

    Get PDF
    ObjectiveaaWe performed a genetic association study with schizophrenic patients to investigate whether the V-akt murine thymoma viral oncogene homolog 1 (AKT1) gene plays a role in obstetric complications. MethodsaaOne-hundred-eighty patients with schizophrenia (male, 113; female, 67) were included. All patients fulfilled DSM-IV criteria for schizophrenia. Obstetric complications were measured by the Lewis scale. Prenatal and perinatal information was retrospectively collected from the patients ’ mothers. We selected six single nucleotide polymorphisms (SNPs) for the AKT1 gene: SNP1 (rs3803300), SNP2 (rs1130214), SNP3 (rs3730358), SNP4 (rs 1130233), SNP5 (rs2494732), and SNPA (rs2498804). The genotype data were analyzed for an association with the Lewis total score in terms of allele, genotype, and haplotype distribution. ResultsaaThe mean total Lewis scores were 1.30±1.61 for males and 1.54±1.87 for females. Higher total score tended to be correlated with an earlier age of onset of schizophrenia in females. In the total sample, no SNP was associated with obstetric complications. However, the additional analyses for male and female subgroups found a significant associatio

    Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics

    Get PDF
    The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi_(0.5)Sb_(1.5)Te_3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 ± 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices

    Endothelial Dysfunction and Increased Carotid Intima-Media Thickness in the Patients with Slow Coronary Flow

    Get PDF
    Flow mediated brachial dilatation (FMD) and carotid intima-media thickness (IMT) have been a surrogate for early atherosclerosis. Slow coronary flow in a normal coronary angiogram is not a rare condition, but its pathogenesis remains unclear. A total of 85 patients with angina were evaluated of their brachial artery FMD, carotid IMT and conventional coronary angiography. Coronary flow was quantified using the corrected thrombosis in myocardial infarction (TIMI) frame count method. Group I was a control with normal coronary angiography (n = 41, 56.1 ± 8.0 yr) and group II was no significant coronary stenosis with slow flow (n = 44, 56.3 ± 10.0 yr). Diabetes was rare but dyslipidemia and family history were frequent in group II. Heart rate was higher in group II than in group I. White blood cells, especially monocytes and homocysteine were higher in group II. The FMD was significantly lower in group II than in group I. Elevated heart rate, dyslipidemia and low FMD were independently related with slow coronary flow in regression analysis. Therefore, endothelial dysfunction may be an earlier vascular phenomenon than increased carotid IMT in the patients with slow coronary flow
    corecore