181 research outputs found

    The three-dimensionality of the hiPSC-CM spheroid contributes to the variability of the field potential

    Get PDF
    Background: Field potential (FP) signals from human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) spheroid which are used for drug safety tests in the preclinical stage are different from action potential (AP) signals and require working knowledge of the multi-electrode array (MEA) system. In this study, we developed in silico three-dimensional (3-D) models of hiPSC-CM spheroids for the simulation of field potential measurement. We compared our model simulation results against in vitro experimental data under the effect of drugs E-4031 and nifedipine.Methods:In silico 3-D models of hiPSC-CM spheroids were constructed in spherical and discoidal shapes. Tetrahedral meshes were generated inside the models, and the propagation of the action potential in the model was obtained by numerically solving the monodomain reaction-diffusion equation. An electrical model of electrode was constructed and FPs were calculated using the extracellular potentials from the AP propagations. The effects of drugs were simulated by matching the simulation results with in vitro experimental data.Results: The simulated FPs from the 3-D models of hiPSC-CM spheroids exhibited highly variable shapes depending on the stimulation and measurement locations. The values of the IC50 of E-4031 and nifedipine calculated by matching the simulated FP durations with in vitro experimental data were in line with the experimentally measured ones reported in the literature.Conclusion: The 3-D in silico models of hiPSC-CM spheroids generated highly variable FPs similar to those observed in in vitro experiments. The in silico model has the potential to complement the interpretation of the FP signals obtained from in vitro experiments

    Theoretical Estimation of Cannulation Methods for Left Ventricular Assist Device Support as a Bridge to Recovery

    Get PDF
    Left ventricular assist device (LVAD) support under cannulation connected from the left atrium to the aorta (LA-AA) is used as a bridge to recovery in heart failure patients because it is non-invasive to ventricular muscle. However, it has serious problems, such as valve stenosis and blood thrombosis due to the low ejection fraction of the ventricle. We theoretically estimated the effect of the in-series cannulation, connected from ascending aorta to descending aorta (AA-DA), on ventricular unloading as an alternative to the LA-AA method. We developed a theoretical model of a LVAD-implanted cardiovascular system that included coronary circulation. Using this model, we compared hemodynamic responses according to various cannulation methods such as LA-AA, AA-DA, and a cannulation connected from the left ventricle to ascending aorta (LV-AA), under continuous and pulsatile LVAD supports. The AA-DA method provided 14% and 18% less left ventricular peak pressure than the LA-AA method under continuous and pulsatile LVAD conditions, respectively. The LA-AA method demonstrated higher coronary flow than AA-DA method. Therefore, the LA-AA method is more advantageous in increasing ventricular unloading whereas the AA-DA method is a better choice to increase coronary perfusion

    Transjugular insertion of biliary stent in patients with malignant biliary obstruction complicated by ascites with/without coagulopathy: a prospective study of 12 patients

    Get PDF
    PURPOSEIn patients with malignant biliary obstruction complicated by massive ascites, when endoscopy fails, safe routes for biliary decompression are needed as an alternative to percutaneous approach. We aimed to evaluate the safety and effectiveness of transjugular insertion of biliary stent (TIBS) in patients with malignant biliary obstruction complicated by massive ascites with or without coagulopathy.METHODSFrom March 2012 to December 2017, a total of 12 consecutive patients with malignant biliary obstructions treated with TIBS were enrolled in this study. Five patients had jaundice and cholangitis, while seven had jaundice only. Clinical parameters including technical and clinical success rates and complications following TIBS were evaluated. Overall survival and stent occlusion-free survival were assessed using Kaplan-Meier analysis.RESULTSThe indications for transjugular approach were massive ascites with (n=2) or without (n=10) coagulopathy. TIBS was technically successful in 11 of 12 patients. Clinical success was defined as successful internal drainage and was achieved in eight patients. The mean serum bilirubin level was initially 13.9±6.3 mg/dL and decreased to 4.9±5.3 mg/dL within 1 month after stent placement (P = 0.037). Two patients had procedure-related complications (hemobilia). During the follow-up period (mean, 30 days; range, 1–146 days), all 12 patients died of disease progression. The median overall survival and stent occlusion-free survival times were 19 days (95% confidence interval [CI], 16–22 days) and 19 days (95% CI, 12–26 days), respectively. There was no stent dysfunction in the eight patients that had successful internal drainage.CONCLUSIONTIBS appears to be safe, technically feasible, and clinically effective for patients with malignant biliary obstruction complicated by massive ascites with or without coagulopathy

    Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    Get PDF
    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample

    Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Get PDF
    Caffeic acid phenethyl ester (CAPE) is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days) has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST) and forced swim (FST) tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234)), resulting in an increased pGR(S220/S234) ratio. We also observed negative correlations between pGR(S220)/(S234) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function

    Two Cases of Adrenal Abscesses Following Histoacryl® (N-butyl-2-cyanocrylate) Injection

    Get PDF
    We report two cases of adrenal abscesses that occurred following a Histoacryl® (N-butyl-2-cyanocrylate) injection for variceal bleeding. Patients had been diagnosed with alcoholic liver cirrhosis and gastric varices bleeding and received a Histoacryl® injection for the variceal bleeding. Patients had fever and abdominal tenderness and were diagnosed with an adrenal abscess at 2 months following the Histoacryl® injection. One patient received open drainage and the other underwent percutaneous drainage. When a patient has previously been injected with Histoacryl® for the treatment of variceal bleeding and presents with fever, an evaluation for an unusual complication such as adrenal abscess is recommended

    A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants

    Get PDF
    IntroductionThe emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. MethodsUsing phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. ResultsOur comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. ConclusionThese findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants
    • …
    corecore