669 research outputs found
The Tlo Proteins Are Stoichiometric Components of Candida albicans Mediator Anchored via the Med3 Subunit
The amplification of the TLO (for telomere-associated) genes in Candida albicans, compared to its less pathogenic, close relative Candida dubliniensis, suggests a role in virulence. Little, however, is known about the function of the Tlo proteins. We have purified the Mediator coactivator complex from C. albicans (caMediator) and found that Tlo proteins are a stoichiometric component of caMediator. Many members of the Tlo family are expressed, and each is a unique member of caMediator. Protein expression analysis of individual Tlo proteins, as well as the purification of tagged Tlo proteins, demonstrate that there is a large free population of Tlo proteins in addition to the Mediator-associated population. Coexpression and copurification of Tloα12 and caMed3 in Escherichia coli established a direct physical interaction between the two proteins. We have also made a C. albicans med3Δ/Δ strain and purified an intact Mediator from this strain. The analysis of the composition of the med3Δ Mediator shows that it lacks a Tlo subunit. Regarding Mediator function, the med3Δ/Δ strain serves as a substitute for the difficult-to-make tloΔ/Δ C. albicans strain. A potential role of the TLO and MED3 genes in virulence is supported by the inability of the med3Δ/Δ strain to form normal germ tubes. This study of caMediator structure provides initial clues to the mechanism of action of the Tlo genes and a platform for further mechanistic studies of caMediator\u27s involvement in gene regulatory patterns that underlie pathogenesis
Recommended from our members
Publisher Correction: An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
How did smokers respond to standardised cigarette packaging with new, larger health warnings in the United Kingdom during the transition period? A cross-sectional online survey
Introduction: In the United Kingdom, standardised packaging for cigarettes was phased in between May 2016 and May 2017. We assessed whether there was an association between using standardised packs and warning salience, thoughts about the risks of smoking, thoughts about quitting, and awareness and use of stop-smoking websites. Methods: We conducted a cross-sectional online survey with current smokers aged 16 and over (N = 1865) recruited in two regions of England between February-April 2017, when both standardised and fully-branded packs were on the market. Participants were asked about use of standardised packs, warning salience (noticing, reading closely), and whether the packs they were using increased thoughts of the risks of smoking and quitting. They were also asked about awareness of stop-smoking websites, source of awareness (including warnings on packs), and whether they had visited a stop-smoking website. Results: Most participants reported currently using standardised packs (76.4%), 9.3% were not currently using them but had previously used them, and 14.3% had never used them. Compared with never users, current users were more likely to have noticed the warnings on packs often/very often (AOR (95%CI) = 2.76 (2.10, 3.63)), read them closely often/very often (AOR(95%CI) = 2.16 (1.51, 3.10)), thought somewhat/a lot about the health risks of smoking (AOR(95%CI) = 1.92 (1.38, 2.68)), and thought somewhat/a lot about quitting (AOR(95%CI) = 1.90 (1.30, 2.77)). They were also more likely to have noticed a stop-smoking website on packs. Conclusions: Consistent with the broad objectives of standardised packaging, we found that it was associated with increased warning salience and thoughts about risks and quittingOutput Status: Forthcoming/Available Onlin
Imaging of Glial Cell Activation and White Matter Integrity in Brains of Active and Recently Retired National Football League Players
Importance:
Microglia, the resident immune cells of the central nervous system, play an important role in the brain\u27s response to injury and neurodegenerative processes. It has been proposed that prolonged microglial activation occurs after single and repeated traumatic brain injury, possibly through sports-related concussive and subconcussive injuries. Limited in vivo brain imaging studies months to years after individuals experience a single moderate to severe traumatic brain injury suggest widespread persistent microglial activation, but there has been little study of persistent glial cell activity in brains of athletes with sports-related traumatic brain injury. Objective:
To measure translocator protein 18 kDa (TSPO), a marker of activated glial cell response, in a cohort of National Football League (NFL) players and control participants, and to report measures of white matter integrity. Design, Setting, and Participants:
This cross-sectional, case-control study included young active (n = 4) or former (n = 10) NFL players recruited from across the United States, and 16 age-, sex-, highest educational level-, and body mass index-matched control participants. This study was conducted at an academic research institution in Baltimore, Maryland, from January 29, 2015, to February 18, 2016. Main Outcomes and Measures:
Positron emission tomography-based regional measures of TSPO using [11C]DPA-713, diffusion tensor imaging measures of regional white matter integrity, regional volumes on structural magnetic resonance imaging, and neuropsychological performance. Results:
The mean (SD) ages of the 14 NFL participants and 16 control participants were 31.3 (6.1) years and 27.6 (4.9) years, respectively. Players reported a mean (SD) of 7.0 (6.4) years (range, 1-21 years) since the last self-reported concussion. Using [11C]DPA-713 positron emission tomographic data from 12 active or former NFL players and 11 matched control participants, the NFL players showed higher total distribution volume in 8 of the 12 brain regions examined (P \u3c .004). We also observed limited change in white matter fractional anisotropy and mean diffusivity in 13 players compared with 15 control participants. In contrast, these young players did not differ from control participants in regional brain volumes or in neuropsychological performance. Conclusions and Relevance:
The results suggest that localized brain injury and repair, indicated by higher TSPO signal and white matter changes, may be associated with NFL play. Further study is needed to confirm these findings and to determine whether TSPO signal and white matter changes in young NFL athletes are related to later onset of neuropsychiatric symptoms
Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer\u27s Dementia.
Genetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer\u27s dementia (AD), and GWAS results in African Americans. We find an association between Dlgap2 and AD phenotypes at the variant, gene and protein expression, and methylation levels. Lower cortical DLGAP2 expression is observed in AD and is associated with more plaques and tangles at autopsy and faster cognitive decline. Results will inform future studies aimed at investigating the cross-species role of Dlgap2 in regulating cognitive decline and highlight the benefit of using genetically diverse mice to prioritize novel candidates
Genetic variants and functional pathways associated with resilience to Alzheimer\u27s disease.
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer\u27s disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer\u27s disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values \u3c 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values \u3c 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer\u27s disease (P-values \u3e 0.42) nor associated with APOE (P-values \u3e 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer\u27s disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets
Sex differences in the genetic architecture of cognitive resilience to Alzheimer\u27s disease.
Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer\u27s disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer\u27s disease neuropathology may uncover novel therapeutic targets to treat Alzheimer\u27s disease. It is well established that there are sex differences in response to Alzheimer\u27s disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer\u27s disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer\u27s disease may be personalized based on their biological sex and genetic context
Aged G Protein-Coupled Receptor Kinase 3 (Grk3)-Deficient Mice Exhibit Enhanced Osteoclastogenesis and Develop Bone Lesions Analogous to Human Paget’s Disease of Bone
Paget’s Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget’s Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation
Recommended from our members
Identification of a Rare Coding Variant in Complement 3 Associated with Age-related Macular Degeneration
Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry matched controls revealed two large-effect rare variants; previously described R1210C in the CFH gene (fcase = 0.51%, fcontrol = 0.02%, OR = 23.11), and newly identified K155Q in the C3 gene (fcase = 1.06%, fcontrol = 0.39%, OR = 2.68). The variants suggest decreased inhibition of C3 by Factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology
- …