9 research outputs found

    Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1 alpha (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1 alpha in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1 alpha dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1 alpha dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.Peer reviewe

    Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging

    No full text
    In Gd-DTPA-enhanced T imaging of articular cartilage, the MRI contrast agent with two negative charges is understood to accumulate in tissue inversely to the negative charge of cartilage glycosaminoglycans (GAGs) of proteoglycans (PGs), and this leads to a decrease in the T relaxation time of tissue relative to the charge in tissue. By assuming a constant relaxivity for Gd-DTPA in cartilage, it has further been hypothesized that the contrast agent concentration in tissue could be estimated from consecutive T measurements in the absence or presence of the contrast agent. The spatial sensitivity of the technique was examined at 9.4 T in normal and PG-depleted bovine patellar cartilage samples. As a reference, spatial PG concentration was assessed with digital densitometry from safranin O-stained cartilage sections. An excellent linear correlation between spatial optical density (OD) of stained GAGs and T with Gd-DTPA was observed in the control and chondroitinase ABC-treated cartilage specimens, and the MR parameter accounted for approximately 80% of the variations in GAG concentration within samples. Further, the MR-resolved Gd-DTPA concentration proved to be an even better estimate for PGs, with an improved correlation. However, the linear relation between MR parameters and PG concentration did not apply in the deep tissue, where MR measurements overestimated the PG content. While the absolute [Gd-DTPA] determination may be prone to error due to uncertainty of relaxivity in cartilage, or to other contributing factors such as variations in tissue permeability, the experimental evidence highlights the sensitivity of this technique to reflect spatial changes in cartilage PG concentration in normal and degenerated tissue

    Mechano-acoustic diagnostic of cartilage degeneration and repair

    No full text
    Background: The combined use of high-frequency ultrasound and mechanical indentation has been suggested for the evaluation of cartilage integrity. In this study, we investigated the usefulness of high-resolution B-mode ultrasound imaging and quantitative mechanical measurements for the diagnosis of cartilage degeneration and for monitoring tissue-healing after autologous chondrocyte transplantation. Methods: In the first study, osteochondral samples (n = 32) were obtained from the lateral facet of a bovine patella, and the samples were visually classified as intact (n = 13) or degenerated (n = 19) and were graded with use of the Mankin scoring system. Samples were imaged with use of a 20-MHz ultrasound instrument, and the dynamic modulus (E) of cartilage was determined in unconfined compression with use of a high-resolution materials tester. In the second study, cartilage chondrocytes were harvested from the low-weight-bearing area of six-month-old porcine knee joints and cultured. A month later, a cartilage lesion was created on the facet of the femoral trochlea and was repaired with use of the autologous chondrocyte transplantation technique (n = 10). Three months later, to estimate cartilage E, the repair tissue, the adjacent cartilage, and the sham-operated contralateral joint cartilage (control) were analyzed in situ with an arthroscopic indentation instrument. Subsequently, the same sites were imaged with ultrasound. Results: All visually degenerated bovine samples (mean Mankin score = 4) and five visually normal samples (Mankin score = 1) showed reduced E

    Structure-function relationships in enzymatically modified articular cartilage

    No full text
    The present study is aimed at revealing structure-function relationships of bovine patellar articular cartilage. Collagenase, chondroitinase ABC and elastase were used for controlled and selective enzymatic modifications of cartilage structure, composition and functional properties. The effects of the enzymatic degradations were quantitatively evaluated using quantitative polarized light microscopy, digital densitometry of safranin O-stained sections as well as with biochemical and biomechanical techniques. The parameters related to tissue composition and structure were correlated with the indentation stiffness of cartilage. In general, tissue alterations after enzymatic digestions were restricted to the superficial cartilage. All enzymatic degradations induced superficial proteoglycan (PG) depletion. Collagenase also induced detectable superficial collagen damage, though without causing cartilage fibrillation or tissue swelling. Quantitative microscopic techniques were more sensitive than biochemical methods in detecting these changes. The Young's modulus of cartilage decreased after enzymatic treatments indicating significant softening of the tissue. The PG concentration of the superficial zone proved to be the major determinant of the Young's modulus (r = 0.767, n = 72, p < 0.001). Results of the present study indicate that specific enzymatic degradations of the tissue PGs and collagen can provide reproducible experimental models to clarify the structure-function relationships of cartilage. Effects of these models mimic the changes observed in early osteoarthrosis. Biomechanical testing and quantitative microscopic techniques proved to be powerful tools for detecting the superficial structural and compositional changes while the biochemical measurements on the whole uncalcified cartilage were less sensitive
    corecore