18 research outputs found

    TAS-116, a Well-Tolerated Hsp90 Inhibitor, Prevents the Activation of the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells

    Get PDF
    Chronic inflammation has been associated with several chronic diseases, such as age-related macular degeneration (AMD). The NLRP3 inflammasome is a central proinflammatory signaling complex that triggers caspase-1 activation leading to the maturation of IL-1 beta. We have previously shown that the inhibition of the chaperone protein, Hsp90, prevents NLRP3 activation in human retinal pigment epithelial (RPE) cells; these are cells which play a central role in the pathogenesis of AMD. In that study, we used a well-known Hsp90 inhibitor geldanamycin, but it cannot be used as a therapy due to its adverse effects, including ocular toxicity. Here, we have tested the effects of a novel Hsp90 inhibitor, TAS-116, on NLRP3 activation using geldanamycin as a reference compound. Using our existing protocol, inflammasome activation was induced in IL-1 alpha-primed ARPE-19 cells with the proteasome and autophagy inhibitors MG-132 and bafilomycin A1, respectively. Intracellular caspase-1 activity was determined using a commercial caspase-1 activity kit and the FLICA assay. The levels of IL-1 beta were measured from cell culture medium samples by ELISA. Cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) measurements. Our findings show that TAS-116 could prevent the activation of caspase-1, subsequently reducing the release of mature IL-1 beta. TAS-116 has a better in vitro therapeutic index than geldanamycin. In summary, TAS-116 appears to be a well-tolerated Hsp90 inhibitor, with the capability to prevent the activation of the NLRP3 inflammasome in human RPE cells.Peer reviewe

    Only IL-1β release is inflammasome-dependent upon ultraviolet B irradiation although IL-18 is also secreted

    Get PDF
    Abstract DNA damage accumulates in aged postmitotic retinal pigment epithelium (RPE) cells, a phenomenon associated with the development of age-related macular degeneration. In this study, we have experimentally induced DNA damage by ultraviolet B (UVB) irradiation in interleukin-1α (IL-1α)-primed ARPE-19 cells and examined inflammasome-mediated signaling. To reveal the mechanisms of inflammasome activation, cells were additionally exposed to high levels of extracellular potassium chloride, n-acetyl-cysteine, or mitochondria-targeted antioxidant MitoTEMPO, prior to UVB irradiation. Levels of interleukin-18 (IL-18) and IL-1? mRNAs were detected with qRT-PCR and secreted amounts of IL-1?, IL-18, and caspase-1 were measured with ELISA. The role of nucleotide-binding domain and leucine-rich repeat pyrin containing protein 3 (NLRP3) in UVB-induced inflammasome activation was verified by using the NLRP3-specific siRNA. Reactive oxygen species (ROS) levels were measured immediately after UVB exposure using the cell-permeant 2?,7?-dichlorodihydrofluorescein diacetate (H2DCFDA) indicator, the levels of cyclobutane pyrimidine dimers were assayed by cell-based ELISA, and the extracellular levels of adenosine triphosphate (ATP) determined using a commercial bioluminescence assay. We found that pro-IL-18 was constitutively expressed by ARPE-19 cells, whereas the expression of pro-IL-1? was inducible by IL-1α priming. UVB induced the release of mature IL-18 and IL-1? but NLRP3 contributed only to the secretion of IL-1?. At the mechanistic level, the release of IL-1? was regulated by K+ efflux, whereas the secretion of IL-18 was dependent on ROS production. As well as K+ efflux, the cells released ATP following UVB exposure. Collectively, our data suggest that UVB clearly stimulates the secretion of mature IL-18 as a result of ROS induction, and this response is associated with DNA damage. Moreover, in human RPE cells, K+ efflux mediates the UVB-activated NLRP3 inflammasome signaling, leading to the processing of IL-1?.Peer reviewe

    UV-B-Induced Inflammasome Activation Can Be Prevented by Cis-Urocanic Acid in Human Corneal Epithelial Cells

    Get PDF
    PURPOSE. The cornea is continually exposed to highly energetic solar UV-B (280-320 nm). Our aim was to investigate whether UV-B triggers the activation of NLRP3 inflammasomes and the production of IL-1 beta and/or IL-18 in human corneal epithelial (HCE) cells. Additionally, we studied the capability of cis-urocanic acid (cis-UCA) to prevent inflammasome activation or alleviate inflammation through other signaling pathways. METHODS. HCE-2 cell line and primary HCE cells were primed using lipopolysaccharide or TNF-alpha. Thereafter, cells were exposed to UV-B before or after the addition of cis-UCA or caspase-1 inhibitor. Caspase-1 activity was measured from cell lysates by an enzymatic assay. IL-1 beta, IL-18, IL-6, IL-8, and NLRP3 levels were detected using the ELISA method from cell culture media. Additionally, intracellular NLRP3 levels were determined by the Western blot technique, and cytotoxicity was measured by the LDH assay. RESULTS. UV-B exposure significantly increased caspase-1 activity in TNF-alpha-primed HCE cells. This result was consistent with the concurrently induced IL-1 beta secretion. Both caspase-1 activity and release of IL-1 beta were reduced by cis-UCA. Additionally, UV-B stimulated the caspase-1-independent production of IL-18, an effect also reduced by cis-UCA. Cis-UCA decreased the release of IL-6, IL-8, and LDH in a time-dependent manner when administered to HCE-2 cells after UV-B exposure. CONCLUSIONS. Our findings demonstrate that UV-B activates inflammasomes in HCE cells. Cis-UCA can prevent the secretion of IL-1 beta and IL-18 and therapeutically reduces the levels of IL-6, IL-8, and LDH in UV-B-stressed HCE cells.Peer reviewe

    Oxidative Stress is the Principal Contributor to Inflammasome Activation in Retinal Pigment Epithelium Cells with Defunct Proteasomes and Autophagy

    Get PDF
    Background/Aims: Previously, we demonstrated that blockade of the intracellular clearance systems in human retinal pigment epithelial (RPE) cells by MG-132 and bafilomycin A1 (BafA) induces NLRP3 inflammasome signaling. Here, we have explored the activation mechanisms behind this process. NLRP3 is an intracellular receptor detecting factors ranging from the endogenous alarmins and adenosine triphosphate (ATP) to ultraviolet radiation and solid particles. Due to the plethora of triggers, the activation of NLRP3 is often indirect and can be mediated through several alternative pathways. Potassium efflux, lysosomal rupture, and oxidative stress are currently the main mechanisms associated with many activators. Methods: NLRP3 inflammasomes were activated in human RPE cells by blocking proteasomes and autophagy using MG-132 and bafilomycin A1 (BafA), respectively. P2X7 inhibitor A740003, potassium chloride (KCl), and glyburide, or N-acetyl-L-cysteine (NAC), ammonium pyrrolidinedithiocarbamate (APDC), diphenyleneiodonium chloride (DPI), and mito-TEMPO were added to cell cultures in order to study the role of potassium efflux and oxidative stress, respectively. IL-1β was measured using the ELISA method. ATP levels and cathepsin B activity were examined using commercial kits, and ROS levels using the fluorescent dye 2´,7´-dichlorodihydrofluorescein diacetate (DCFDA). Results: Elevated extracellular potassium prevented the priming factor IL-1α from inducing the production of reactive oxygen species (ROS). It also prevented IL-1β release after exposure of primed cells to MG-132 and BafA. Inflammasome activation increased extracellular ATP levels, which did not appear to trigger significant potassium efflux. The activity of the lysosomal enzyme, cathepsin B, was reduced by MG-132 and BafA, suggesting that cathepsin B was not playing any role in this phenomenon. Instead, MG-132 triggered ROS production already 30 min after exposure, but treatment with antioxidants blocking NADPH oxidase and mitochondria-derived ROS significantly prevented IL-1β release after this activating signal. Conclusion: Our data suggest that oxidative stress strongly contributes to the NLRP3 inflammasome activation upon dysfunctional cellular clearance. Clarification of inflammasome activation mechanisms provides novel options for alleviating pathological inflammation present in aggregation diseases, such as age-related macular disease (AMD) and Alzheimer’s disease

    Oikeusmuotoilulla apua nuorten veroasioihin

    No full text
    Opinnäytetyön tarkoituksena oli lisätä ymmärrystä hankalassa elämäntilanteessa olevista nuorista sekä siitä, miten heidän veroasiointiaan voitaisiin helpottaa. Työssä haluttiin löytää vastauksia, millä tavoin annettu ohjeistus olisi nuorten itsensä ja nuorten kanssa työskentelevien mielestä parasta ja millaisia asioita ohjeistuksesta pitäisi löytyä. Opinnäytetyö tehtiin toimeksiantona Verohallinnolle, ja se on osa nuorten kohderyhmälle tehtyä asiakaslähtöistä kehittämistyötä. Opinnäytetyön tavoitteena oli luoda hankalassa elämäntilanteessa oleville nuorille selkeä ja ymmärrettävä ohjeistus heidän veroasioidensa hoitamiseksi. Samalla tutkittiin, voidaanko visuaalisuuden keinoin luoda käyttäjälähtöisempiä ohjeita. Opinnäytetyön käyttäjäymmärrys perustui olemassa olevaan nuorisotutkimukseen, jota täydensi muun muassa Verohallinnon tekemä asiakasymmärrys nuorista. Opinnäytetyö toteutettiin käyttäen oikeusmuotoilun, palvelumuotoilun ja yhteiskehittämisen menetelmiä. Siinä hyödynnettiin visuaalisuutta sekä ymmärrettävän ja selkeän kielen periaatteita. Opinnäytetyössä luotuja prototyyppejä jatkokehitettiin yhteiskehittämisen menetelmän mukaisesti yhdessä oikeiden käyttäjien kanssa. Opinnäyteyön lopputuotoksena tehtiin kolme prototyyppiä nuorten veroasioiden neuvonnan parantamiseksi. Samalla saatiin vastauksia myös siihen, millä tavoin erilaiset ohjeistuksen keinot toimivat ja millainen rooli visuaalisuudella on ohjeiden tekemisessä. Opinnäytetyön tuloksia voidaan hyödyntää Verohallinnon nuorten kohderyhmän ohjeiden jatkokehittämisessä, mutta myös muussa nuorille suunnattujen ohjeiden kehittämistyössä. Kehittämisideana esitän, että Verohallinnon vero.fi-sivuille luotaisiin nuorille suunnatut omat alasivut. Esitän myös, että valtionhallinnon eri virastot loisivat poikkihallinnollisia elämäntapahtumalähtöistä ohjeistuksia

    Antimycin A-induced mitochondrial dysfunction regulates inflammasome signaling in human retinal pigment epithelial cells

    Get PDF
    Publisher Copyright: © 2021 The AuthorsAge-related macular degeneration (AMD) is a severe retinal eye disease where dysfunctional mitochondria and damaged mitochondrial DNA in retinal pigment epithelium (RPE) have been demonstrated to underlie the pathogenesis of this devastating disease. In the present study, we aimed to examine whether damaged mitochondria induce inflammasome activation in human RPE cells. Therefore, ARPE-19 cells were primed with IL-1 alpha and exposed to the mitochondrial electron transport chain complex III inhibitor, antimycin A. We found that antimycin A-induced mitochondrial dysfunction caused caspase-1-dependent inflammasome activation and subsequent production of mature IL-1 beta and IL-18 in human RPE cells. AIM2 and NLRP3 appeared to be the responsible inflammasome receptors upon antimycin A-induced mitochondrial damage. We aimed at verifying our findings using hESC-RPE cells but antimycin A was absorbed by melanin. Therefore, results were repeated on D407 RPE cell cultures. Antimycin A-induced mitochondrial and NADPH oxidase-dependent ROS production occurred upstream of inflammasome activation, whereas K+ efflux was not required for inflammasome activation in antimycin A-treated human RPE cells. Collectively, our data emphasize that dysfunctional mitochondria regulate the assembly of inflammasome multiprotein complexes in the human RPE cells. The present study associates AIM2 with the pathogenesis of AMD.Peer reviewe

    Epoxomicin, a Selective Proteasome Inhibitor, Activates AIM2 Inflammasome in Human Retinal Pigment Epithelium Cells

    No full text
    Emerging evidence suggests that the intracellular clearance system plays a vital role in maintaining homeostasis and in regulating oxidative stress and inflammation in retinal pigment epithelium (RPE) cells. Dysfunctional proteasomes and autophagy in RPE cells have been associated with the pathogenesis of age-related macular degeneration. We have previously shown that the inhibition of proteasomes using MG-132 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in human RPE cells. However, MG-132 is a non-selective proteasome inhibitor. In this study, we used the selective proteasome inhibitor epoxomicin to study the effect of non-functional intracellular clearance systems on inflammasome activation. Our data show that epoxomicin-induced proteasome inhibition promoted both nicotinamide adenine dinucleotide phosphate oxidase and mitochondria-mediated oxidative stress and release of mitochondrial DNA to the cytosol, which resulted in potassium efflux-dependent absence in melanoma 2 (AIM2) inflammasome activation and subsequent interleukin-1β secretion in ARPE-19 cells. The non-specific proteasome inhibitor MG-132 activated both NLRP3 and AIM2 inflammasomes and oxidative stress predominated as the activation mechanism, but modest potassium efflux was also detected. Collectively, our data suggest that a selective proteasome inhibitor is a potent inflammasome activator in human RPE cells and emphasize the role of the AIM2 inflammasome in addition to the more commonly known NLRP3 inflammasome

    Differential expression of inflammasome-related genes in induced pluripotent stem-cell-derived retinal pigment epithelial cells with or without history of age-related macular degeneration

    Get PDF
    Inflammation is a key underlying factor of age-related macular degeneration (AMD) and inflammasome activation has been linked to disease development. Induced pluripotent stem-cell-derived retinal pigment epithelial cells (iPSC-RPE) are an attractive novel model system that can help to further elucidate disease pathways of this complex disease. Here, we analyzed the effect of dysfunctional protein clearance on inflammation and inflammasome activation in iPSC-RPE cells generated from a patient suffering from age-related macular degeneration (AMD) and an age-matched control. We primed iPSC-RPE cells with IL-1α and then inhibited both proteasomal degradation and autophagic clearance using MG-132 and bafilomycin A1, respectively, causing inflammasome activation. Subsequently, we determined cell viability, analyzed the expression levels of inflammasome-related genes using a PCR array, and measured the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and MCP-1 secreted into the medium. Cell treatments modified the expression of 48 inflammasome-related genes and increased the secretion of mature IL-1β, while reducing the levels of IL-6 and MCP-1. Interestingly, iPSC-RPE from an AMD donor secreted more IL-1β and expressed more Hsp90 prior to the inhibition of protein clearance, while MCP-1 and IL-6 were reduced at both protein and mRNA levels. Overall, our results suggest that cellular clearance mechanisms might already be dysfunctional, and the inflammasome activated, in cells with a disease origin.publishedVersionPeer reviewe

    Antimycin A-Induced Mitochondrial Damage Causes Human RPE Cell Death despite Activation of Autophagy

    No full text
    Mitochondrial dysfunction has been implicated in a wide variety of degenerative diseases, including age-related macular degeneration. Damage to mitochondria and mitochondrial DNA accumulates with age in the postmitotic retinal pigment epithelium (RPE), which could lead to RPE cell death and trigger disease. One possible mechanism for cells to avoid cell death is mitophagy, the targeted clearance of damaged mitochondria by autophagy. Here, we induced mitochondrial damage in human RPE cells (ARPE-19 and hRPE), using antimycin A, an inhibitor of complex III of the electron transport chain, and investigated cellular viability, mitochondrial structure and function, and autophagy activity. We observed that antimycin A evoked dose-dependent cell death, a rapid loss in mitochondrial membrane potential, and a collapse of oxidative phosphorylation. Mitochondria appeared swollen and there was clear damage to their cristae structure. At the same time, cells were undergoing active autophagy and were sensitive to autophagy inhibition by bafilomycin A1 or chloroquine. These results indicate that mitochondrial dysfunction can cause significant RPE damage and that autophagy is an important survival mechanism for cells suffering from mitochondrial damage
    corecore