4 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma

    Get PDF

    Representative sequencing: Unbiased sampling of solid tumor tissue

    Get PDF
    International audienceAlthough thousands of solid tumors have been sequenced to date, a fundamental under-sampling bias isinherent in current methodologies. This is caused by a tissue sample input of fixed dimensions (e.g., 6 mmbiopsy), which becomes grossly under-powered as tumor volume scales. Here, we demonstrate representative sequencing (Rep-Seq) as a new method to achieve unbiased tumor tissue sampling. Rep-Seq uses fixed residual tumor material, which is homogenized and subjected to next-generation sequencing. Analysis of intratumor tumor mutation burden (TMB) variability shows a high level of misclassification using current single-biopsy methods, with 20% of lung and 52% of bladder tumors having at least one biopsy with high TMB butlow clonal TMB overall. Misclassification rates by contrast are reduced to 2% (lung) and 4% (bladder) when a more representative sampling methodology is used. Rep-Seq offers an improved sampling protocol for tumor profiling, with significant potential for improved clinical utility and more accurate deconvolution of clonal structure
    corecore