46 research outputs found

    Determining PTEN Functional Status by Network Component Deduced Transcription Factor Activities

    Get PDF
    PTEN-controlled PI3K-AKT-mTOR pathway represents one of the most deregulated signaling pathways in human cancers. With many small molecule inhibitors that target PI3K-AKT-mTOR pathway being exploited clinically, sensitive and reliable ways of stratifying patients according to their PTEN functional status and determining treatment outcomes are urgently needed. Heterogeneous loss of PTEN is commonly associated with human cancers and yet PTEN can also be regulated on epigenetic, transcriptional or post-translational levels, which makes the use of simple protein or gene expression-based analyses in determining PTEN status less accurate. In this study, we used network component analysis to identify 20 transcription factors (TFs) whose activities deduced from their target gene expressions were immediately altered upon the re-expression of PTEN in a PTEN-inducible system. Interestingly, PTEN controls the activities (TFA) rather than the expression levels of majority of these TFs and these PTEN-controlled TFAs are substantially altered in prostate cancer mouse models. Importantly, the activities of these TFs can be used to predict PTEN status in human prostate, breast and brain tumor samples with enhanced reliability when compared to straightforward IHC-based or expression-based analysis. Furthermore, our analysis indicates that unique sets of PTEN-controlled TFAs significantly contribute to specific tumor types. Together, our findings reveal that TFAs may be used as “signatures” for predicting PTEN functional status and elucidate the transcriptional architectures underlying human cancers caused by PTEN loss

    Analysing algorithms and data sources for the tissue-specific reconstruction of liver healthy and cancer cells

    Get PDF
    Genome-Scale Metabolic Models (GSMMs), mathematical representations of the cell metabolism in different organisms including humans, are resourceful tools to simulate metabolic phenotypes and understand associated diseases, such as obesity, diabetes and cancer. In the last years, different algorithms have been developed to generate tissue-specific metabolic models that simulate different phenotypes for distinct cell types. Hepatocyte cells are one of the main sites of metabolic conversions, mainly due to their diverse physiological functions. Most of the liver's tissue is formed by hepatocytes, being one of the largest and most important organs regarding its biological functions. Hepatocellular carcinoma is, also, one of the most important human cancers with high mortality rates. In this study, we will analyze four different algorithms (MBA, mCADRE, tINIT and FASTCORE) for tissue-specific model reconstruction, based on a template model and two types of data sources: transcriptomics and proteomics. These methods will be applied to the reconstruction of metabolic models for hepatocyte cells and HepG2 cancer cell line. The models will be analyzed and compared under different perspectives, emphasizing their functional analysis considering a set of metabolic liver tasks. The results show that there is no ``ideal'' algorithm. However, with the current analysis, we were able to retrieve knowledge about the metabolism of the liver.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE01-0145-FEDER-000004) and Search-ON2: Revitalization of HPC infrastructure of UMinho, (NORTE-07-0162-FEDER-000086), all funded by European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Current state of genome-scale modeling in filamentous fungi

    Get PDF
    The group of filamentous fungi contains important species used in industrial biotechnology for acid, antibiotics and enzyme production. Their unique lifestyle turns these organisms into a valuable genetic reservoir of new natural products and biomass degrading enzymes that has not been used to full capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi

    Beyond the Genome: Epigenetic Mechanisms in Lung Remodeling

    No full text
    corecore