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Abstract The group of filamentous fungi contains

important species used in industrial biotechnology for

acid, antibiotics and enzyme production. Their unique

lifestyle turns these organisms into a valuable genetic

reservoir of new natural products and biomass de-

grading enzymes that has not been used to full

capacity. One of the major bottlenecks in the devel-

opment of new strains into viable industrial hosts is the

alteration of the metabolism towards optimal produc-

tion. Genome-scale models promise a reduction in the

time needed for metabolic engineering by predicting

the most potent targets in silico before testing them

in vivo. The increasing availability of high quality

models and molecular biological tools for manipulat-

ing filamentous fungi renders the model-guided engi-

neering of these fungal factories possible with

comprehensive metabolic networks. A typical fungal

model contains on average 1138 unique metabolic

reactions and 1050 ORFs, making them a vast

knowledge-base of fungal metabolism. In the present

review we focus on the current state as well as

potential future applications of genome-scale models

in filamentous fungi.

Keywords Filamentous fungi � Genome-scale

models � Metabolic engineering � Metabolism �
Systems biology

Introduction

Filamentous fungi have been used for decades in

industrial biotechnology exploiting their ability to

utilize various sources of nutrients and tolerating

adverse growth conditions. For example, tolerance of

low pH and the endogenous property of producing

citric acid in high amounts have led to the establish-

ment of Aspergillus niger as the major source of citric

acid production. Furthermore, reflecting the saprobic

lifestyle of many filamentous fungi, they harbor a

great variety of biomass-degrading enzymes natively

produced in high amounts. Additionally, the large

diversity of bioactive compounds produced by

filamentous fungi is just being recognized as a

valuable reservoir of promising new natural com-

pounds. Exploration of the biosynthetic capabilities of

these organisms has been facilitated by the availability

of genome sequences, thereby enabling the discovery

of secondary metabolite clusters being inactive under

standard laboratory conditions.

A key requirement for the transition of a new

compound into a viable commercial product is the

availability of a host producing the compound in

sufficiently high amounts. As the organisms are, in

general, not evolutionarily optimized to produce a
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single compound in optimal amounts, process opti-

mizations as well as genetic modifications have to be

performed. The rational approach of modifying the

metabolism of an organism in order to improve

product output constitutes the field of metabolic

engineering. Due to the lack of information in the

pre-genomic era, the scope of metabolic engineering

has been limited to individual pathways not consid-

ering inherent interdependencies in the metabolic

network. The availability of genome sequence infor-

mation provides the opportunity to expand the scope

of metabolic engineering to the whole metabolism

transforming the field towards systems biotechnology.

As the process of metabolic engineering represents a

bottleneck in the development of many cell factories,

accurate predictions by metabolic models could help

to reduce the time and costs involved by guiding the

efforts towards the most promising set of modifications.

Since the first publication of a complete genome

sequence for Haemophilus influenza 20 years ago

(Fleischmann et al. 1995), the number of published

genomes has grown rapidly. The availability of these

genomes enabled early reconstruction of the metabolic

networks of several species in the groups of viruses

(Edwards and Palsson 1999), bacteria (Edwards and

Palsson 2000), and yeast (Förster et al. 2003) on the

genome scale. These initial drafts have been con-

tinuously updated and curated over time, extending the

scope and biochemical information contained (Orth

et al. 2011; Osterlund et al. 2012). This long period of

development demonstrates the iterative nature of model

establishment in systems biology where new informa-

tion is successively included and predictions are

validated using experimental data. The process can be

visualized as an iterative cycle (see Fig. 1) where the

repeated comparison of model predictions with ex-

perimental observations leads to biological insights and

refinement of the model.

The development of genome-scale network recon-

structions (GENRE) in filamentous fungi started consid-

erably laterwith thefirst genomebeing published in 2003

forNeurospora crassa (Galagan et al. 2003) followed by

the Aspergillus nidulans (Galagan et al. 2005), A. oryzae

(Machida et al. 2005) and A.. fumigatus (Nierman et al.

2005) in 2005. To date genome-scale reconstructions for

the species shown in Table 1 have been published on the

basis of available genome sequences and extensive

biochemical legacy information.

These reconstructions differ considerably in their

content of legacy information included, reflecting

different strategies ofmodel establishment. The process

of manual reconstruction tends to be laborious, as a

maximum amount of information is considered leading

to the generation of a structured knowledge base. The

complementary approach aims at establishing genome-

scale reconstructions (semi-)automatically based on

sequence comparisons and gene assignments, enabling

the prediction of genome-scale networks for less

covered species. While these models generally move

towards a larger number of genes and reactions

included as models are progressively improved, a

qualitative comparison with respect to the numbers of

reactions and genes included in the resulting models of

these different strategies is not directly possible. The

majority of automatically generated models contain

dead-ends and/or unconnected reactions that have been

removed from manually created and curated models,

resulting in higher number of genes included. The

results from both of these approaches are fragmentary

summaries of the metabolic capacities of the organisms

requiring additional curation in the form of gap-filling

in order tomake computational analysis of the networks

feasible. The mathematical background of the under-

lying modeling approach has been reviewed elsewhere

(Llaneras and Picó 2008).

Over the last decade, the conceptual foundations for

genome-scale metabolic modelling have been laid by

the development of standards for model generation

(Le Novère et al. 2005; Thiele and Palsson 2010),

model exchange (Hucka et al. 2003) and a variety of

computational methods for the analysis of the result-

ing models (Schellenberger et al. 2011). The labor-

intensive nature of model construction led to the

development of methods for automating a subset of

steps in this process (Agren et al. 2013) up to a fully

automated generation of genome-scale metabolic

reconstructions (Henry et al. 2010; Pitkänen et al.

2014). This long history of methodical developments

now enables researchers to easily generate a genome-

scale model for their species of interest and subse-

quently use it for model-driven discovery and rational

strain engineering. The availability of genome se-

quences as well as of established and well-curated

models for many species further facilitates the estab-

lishment of new genome-scale reconstructions. As

filamentous fungi provide a valuable source of new
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natural products, further increase in the use of

genome-scale models in the engineering of these

organisms can be expected. In this review we focus on

the current state of genome-scale modeling and

applications in filamentous fungi and possible future

applications.

The applications that have been recorded in

filamentous fungi can be divided into three groups.

One of the most popular uses for the genome-sale

models exploits the underlying collection of informa-

tion in order to identify gaps in the genome annotation,

transfer knowledge to related organisms or generate

reduced models for specific analyses. The second

category, called model-aided discovery, contains

examples where discrepancies between model simula-

tions and experimental data led to the discovery of new

biological traits. In the third category, we focus on the

applications of genome-scale models for the interpre-

tation of experimental data. This use and the syner-

gism between genome-scale models and omics

technologies have been reviewed by Hyduke et al.

(2013).

Structural knowledge base of fungal metabolism

Well-curated genome-scale metabolic models repre-

sent a structured knowledge base on the metabolism of

the particular organism. The link between available

genetic, metabolic and bibliomic information repre-

sents a valuable resource for researchers that has not

been fully exploited. Its potential applications include

development of new genome-scale reconstructions,

estimation of network capabilities, as well as analysis

of different types of omics data and annotation of

related organisms. The enhancement of genome

annotations using metabolic networks to represent

the relationships between individual enzymatic genes

has been coined as ‘‘2D annotation’’ (Reed et al.

2006). The usefulness of this resulting mapping

between genes and metabolic functions for the gene

function assignment in related organisms has been

demonstrated by Liu et al. (2012). The authors used

existing genome-scale models as template framework

for mapping genes of Scheffersomyces stipitis.

Similarly, the Aspergillus niger genome-scale model

(GEM) has been used to assign genes to metabolic

pathways in different strains (Andersen et al. 2011).

The existing genome-scale reconstructions for a

wide variety of organisms facilitate the development

of new metabolic networks as reconstructions of

related organisms can be used as a template. This

tendency of reusing existing networks is demonstrated

by the different network reconstructions of A. niger,

which have been used as a starting point for the

development of the GENREs of P. chrysogenum

(Agren et al. 2013), Trichoderma reseii (Arvas et al.

2011), Mortierella alpina and Mucor circinelloides

(Vongsangnak et al. 2013). Besides this usage for the

development of additional genome-scale networks,

existing GENREs are actively used as a source to

generate reduced models containing all relevant

features while facilitating computational analysis.

These reduced models can be employed to calculate

metabolic fluxes from experimental data as shown by

Panagiotou et al. (2008) in their study on the

Fig. 1 Iterative cycle of

model establishment.

Examples are taken from

Andersen et al. (2009);

Melzer et al. (2009);

Dreyfuss et al. (2013) and

Ledesma-Amaro et al.

(2014)
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Table 1 Genome-scale reconstructions of filamentous fungi

Organism Year Unique reactions ORFs Validation Reference

Ashbya gossypii 2014 1686b 506 None Pitkänen et al. (2014)

2014 1596 766 Growth predictions

Riboflavin production

Ledesma-Amaro et al. (2014)

Aspergillus clavatus 2014 2118b 695 None Pitkänen et al. (2014)

Aspergillus fumigatus 2014 2330b 764 None Pitkänen et al. (2014)

Aspergillus nidulans 2008 676 666 Growth predictions David et al. (2008)

2014 2226b 745 None Pitkänen et al. (2014)

Aspergillus niger 2008 1190 871 Yield prediction

Physiology prediction

Andersen et al. (2008)

2014 2249b 751 None Pitkänen et al. (2014)

Aspergillus oryzae 2008 1053 1314 Growth predictions Vongsangnak et al. (2008)

2014 2453b 820 None Pitkänen et al. (2014)

Aspergillus terreus 2013 1357 1454 Growth predictions Liu et al. (2013)

2014 2401b 794 None Pitkänen et al. (2014)

Batrachochytrium dendrobatidis 2014 1979b 556 None Pitkänen et al. (2014)

Botrytis cinerea 2014 2173b 691 None Pitkänen et al. (2014)

Chaetomium globosum 2014 1930b 610 None Pitkänen et al. (2014)

Coprinus cinereus 2014 2080b 636 None Pitkänen et al. (2014)

Encephalitozoon cuniculi 2014 536b 161 None Pitkänen et al. (2014)

Fusarium graminearum 2014 2182b 729 None Pitkänen et al. (2014)

Fusarium oxysporum 2014 2346b 786 None Pitkänen et al. (2014)

Fusarium verticillioides 2014 2361b 801 None Pitkänen et al. (2014)

Laccaria bicolor 2014 2162b 666 None Pitkänen et al. (2014)

Magnaporthe grisea 2014 2152b 686 None Pitkänen et al. (2014)

Mortierella alpina 2013 1205 1042 None Vongsangnak et al. (2013)

Mucor circinelloides 2013 1111 1208 None Vongsangnak et al. (2013)

Mycosphaerella graminicola 2014 2363b 773 None Pitkänen et al. (2014)

Nectria haematococca 2014 2273b 783 None Pitkänen et al. (2014)

Neosartorya fischeri 2014 2200b 724 None Pitkänen et al. (2014)

Neurospora crassa 2013 1027 836 Growth predictions

Gene essentiality

Nutrient rescue

Synthetic lethals

Dreyfuss et al. (2013)

2014 2189b 691 None Pitkänen et al. (2014)

Penicillium chrysogenum 2013 1471 1006 None Agren et al. (2013)

Phaeosphaeria nodorum 2014 2449b 798 None Pitkänen et al. (2014)

Phanerochaete chrysosporium 2014 2107b 655 None Pitkänen et al. (2014)

Phycomyces blakesleeanus 2014 2242b 688 None Pitkänen et al. (2014)

Postia placenta 2014 2047b 647 None Pitkänen et al. (2014)

Puccinia graminis 2014 1946b 564 None Pitkänen et al. (2014)

Rhizopus oryzae 2014 2124b 654 None Pitkänen et al. (2014)

Sclerotinia sclerotiorum 2014 2040b 653 None Pitkänen et al. (2014)

Trichoderma reesei 2014 2145b 697 None Pitkänen et al. (2014)

Ustilago maydis 2014 2068b 621 None Pitkänen et al. (2014)
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overexpression of phosphoketolase, as well as in the

follow-up study on 6-methylsalicylic acid production

in A. nidulans (Panagiotou et al. 2009).

As genome-scale reconstructions include all

theoretically possible metabolic states of an organism,

simulating the flux distribution might generate unre-

alistic results due to the use of otherwise inactive

reactions. One example of this is the inability of

standard models to accurately predict the secondary

metabolite profile produced by a given Aspergillus

strain. This is partially due to transcriptional and

epigenetic regulation of the corresponding gene clus-

ters under standard laboratory conditions (Sanchez

et al. 2012). One strategy of dealing with this kind of

phenotypic flexibility is the use of omics data as

surrogate to determine active reactions in a given

environment.

Besides making use of omics data for metabolic

modeling, genome-scale reconstructions can be used

for the interpretation of omics data by providing the

biological framework. There are different examples

where genome-scale networks have been used for the

analysis of omics data in filamentous fungi. By

correlating transcriptional data with calculated flux

values during malate production in A. oryzae under

nitrogen-starvation conditions, Knuf et al. (2013) were

able to identify candidates of transcriptionally regulat-

ed fluxes representing potential targets for metabolic

engineering. Using a reduced model of the A. niger

GEM, Melzer et al. (2009)developed a similar

approach, where they correlated the fluxes through

individual pathways with fructofuranosidase produc-

tion. Using this strategy, they proposed targets for

overexpression and gene deletion that would result in

an increased fructofuranosidase production.

Model-aided discovery

The potential of GENREs for hypothesis generation

starts already at the stage of building the model when a

complete list of reactions present in the organism is

compiled. This prediction of missing steps in the

metabolic pathways can guide experiments in order to

check the predicted function of a gene as well as

suggesting functional annotation for orphan genes.

This strategy of guiding experimental research using

models leads to an iterative cycle refining both the

biological knowledge as well as the model itself (see

Fig. 1). This use of GEMs for the generation of

biological insights is demonstrated by the validation

process used in the establishment of the Neurospora

crassa model (Dreyfuss et al. 2013). Using their

reconstruction the authors were able to predict the

gene essentially of reactions included in the model

with a sensitivity and specificity of 99.1 and 93.6 %

respectively. Discrepancy of the predictions with

experimental data for the Derg-14 mutant led to the

discovery of an error in the published knockout strain.

Due to the incomplete characterization of the

metabolism for most species, even the most compre-

hensive of genome-scale reconstructions contain gaps

resulting from metabolic reactions not directly char-

acterized in the given organism. However the presence

of some specific metabolic reactions can be deduced

from observed metabolic capacities of the organism.

Identification of these gaps in the network provides the

opportunity for guiding the discovery of new genes

encoding the enzymatic activity. Candidate genes for

individual reactions can be predicted from known

homologues in closely related organisms and subse-

quently tested thereby improving the genome annota-

tion. This kind of strategy has been used by

Vongsangnak et al. (2008) to revise the annotation

of the A. oryzae genome. The authors were able to

assign putative functions to 398 newly predicted genes

based on gaps identified during the reconstruction of

the metabolic network. Similarly, missing reactions in

the set-up of the A. nidulans GENRE (David et al.

2008) led to the assignment of putative functions to

472 genes based on similarity to orthologous genes

catalyzing the missing reaction. This concept of

Table 1 continued

Organism Year Unique reactions ORFs Validation Reference

Summarya 1912 (1136) 756 1050)

a Numbers are averages. Numbers in parenthesis is the average without including the CoReCo-models
b CoReCo-models; Total number of reactions containing dead-ends
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knowledge-driven gene assignment complements the

activity of classical gene function prediction strategies

based on sequence motifs. During the generation of

genome-scale models, gaps in the set of gene assign-

ments are easily detectable, either by manual curation,

examining network connectivity, or modeling (Thiele

and Palsson 2010).

Genome-scale model (GEM) aided assessment

of phenotypes

Predicting experimental observations not only gives a

hint about the outcome of the experiment, but can also

give a mechanistic explanation for the observed

phenotype. In some of our previous work, we used this

approach in the comparison of the citric-acid-produc-

tion strain A. niger ATCC 1015 with the A. niger CBS

513.88 used for industrial enzyme production (Ander-

sen et al. 2011). We found an increased expression of

genes in the biosynthetic pathways of threonine, serine

and tryptophan in the CBS 513.88 strain, reflecting the

over-representation of these amino acids in glucoamy-

lase A. Simulation of the fluxes using the GEM of A.

niger showed that the fluxes carried by these synthetic

pathways are required to be at least twice the value in

ATCC 1015 in order to support the enzyme production

observed in CBS 513.88. This kind of metabolic cost

estimation has been proven useful in elucidating the

possible reason for the sequence of different acids

produced by A. niger depending on the ambient pH

(Andersen et al. 2009). Considering the acidification

potential of the single acids, we have been able to show

that the sequence of production is in accordance with an

optimal acidification of the surrounding environment at

any pH level. This finding suggested that this acidifi-

cation potential of A. niger evolved as a strategy to

sustain in a competitive environment.

A similar approach of metabolic cost calculation has

been applied to the genome scale model of A. niger in

order to estimate the metabolic cost associated with by-

product formation and reconsumption as shown by

(Pedersen et al. 2012). Depending on the magnitude of

product formation these kind of metabolic costs are

reflected by observable flux changes as demonstrated by

Driouch et al. (2012). The authors used the GEM of A.

niger to determine differences in flux distributions

between the wild-type SKANip8 and the fructofuranosi-

dase producing SKAn1015 strain. Using this approach

they showed that expression of the suc1 gene was

sufficient to induce redistribution of fluxes favoring the

production of fructofuranosidase. Simulation of the flux

capacities predicted the possibility of further increasing

fructofuranosidase production up to eight-fold without

affecting growth performance.

As data-heavy omics-techniques are becoming

increasingly important, the need for tools facilitating

the interpretation of the numbers generated from these

experiments emerges. Genome-scale models have

been used as basis for the construction of organism-

specific metabolic maps. Utilizing these maps to plot

changes in expression profiles from microarray data

provides an intuitive access to the data, as significant

changes are visualized and put into the metabolic

context. The described approach has been used by

Salazar and co-workers in their genome-wide study on

glycerol metabolism to analyze changes in the

expression of metabolic genes between glycerol and

glucose fermentation (Salazar et al. 2009). This

strategy allows the immediate visual identification of

sub pathways showing increased or decreased activity

while comparing different conditions. A similar

function is now available in the KEGG database

(Kanehisa et al. 2014), where omics data can be loaded

and plotted onto the corresponding metabolic network.

Tools exploiting the topological information con-

tained in these genome-scale reconstructions have

been developed for the identification of highly

regulated metabolites in transcriptomic data (Patil

and Nielsen 2005).

Discussion

While genome-scale metabolic modeling in Escher-

ichia coli and Saccharomyces cerevisiae has demon-

strated great success in the development and usage of

GEMs, the transfer and application to filamentous

fungi still lags behind. This delay is not only attributed

to the later publication of genome sequences for

filamentous fungi, but also reflects the differences in

complexity (in particular the number of secreted

products and growth morphology) and level of char-

acterization of the individual organisms. A key aspect

of metabolism in eukaryotes is the separation of

metabolic reactions in different compartments. The

correct assignment of metabolic enzymes to these

compartments requires detailed information not
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readily available for a number of components in

filamentous fungi metabolism. Even though this

imprecision can limit the accuracy of predictions by

these models, they still provide a valuable tool for data

interpretation besides being a collection of informa-

tion that is easily accessible. The unique feature of

genome-scale network reconstructions is the integra-

tion of different types of information from various

sources including databases such as KEGG and

Swissprot as well as primary literature data. This

ordered collection of metabolic reactions is curated

with genomic information and literature citations

which results in a structured knowledgebase for the

specific organism. While organism specific databases

pursue a similar goal, the strength of genome-scale

reconstructions is the easy accessibility for computa-

tional analysis.

Although genome-scale models have been devel-

oped for various filamentous fungi (see Table 1), the

directly modeling-driven applications have been lim-

ited to date compared to other organisms, in particular

considering the large industrial application of these

organisms. Possibly due to the complexity of fungi,

most published examples focus on applying themodels

for data interpretation and theoretical calculations.

However, these retrospective uses have been relatively

successful in providing valuable insights in underlying

mechanisms and quantitative assessment of the

metabolic state causing a specific phenotype. The

potential of these models for metabolic engineering, in

contrast, has yet to be demonstrated as most of the

published efforts end with the prediction of targets,

thereby leaving the proof of feasibility to be made.

This lacking verification ofmodel predictionsmight be

attributed to the absence of efficient tools for genetic

manipulations. Such tools have long been available in

E. coli and S. cerevisiae, enabling multiple genetic

modifications in the same host, but have only recently

become available in filamentous fungi (Oakley et al.

2012; Jørgensen et al. 2014; Delmas et al. 2014).

Additional factors potentially hampering the final

development of these models into predictive tools for

genetic modifications are the low percentage of

experimentally verified gene assignments, unknown

subcellular localization of the different pathways, as

well as insufficient data for model validation. Due to

advancements in the field of high throughput omics-

technologies this necessary data for modeling is

becoming more and more available facilitating the

prospective use of genome-scale models as well as the

model building process. The extension of the knowl-

edge being available for incorporation will further-

more improve the prediction accuracy of existing

models rendering more advanced applications possi-

ble. This improvement of prediction accuracy over

time has already been demonstrated by the genome-

scale model of E. coli where accuracies of[90 and

80 % have been achieved for single- and double gene

knockouts respectively (Monk and Palsson 2014).

Recent attempts in the prediction of targets for

metabolic engineering mainly consisted of finding

suitable knock-out and overexpression targets, leaving

a gap between the available molecular biological tools

and the set of simulated modifications. However it can

be expected that with the advent of synthetic biology,

the repertoire of modifications will be extended to the

introduction of exogenous metabolic reactions and

new regulatory circuits further optimizing the net-

work. The increase in accuracy will also provide the

possibility to systematically simulate combinations of

modifications leading to the assumption free identifi-

cation of optimal targets for metabolic engineering.

Continuous extension of the models towards more

detailed representations while improving their predic-

tive power demonstrates the iterative nature of model

development. The availability of predictive models for

important organisms used in industrial biotechnology

will provide the opportunity to choose the best

performing host platform for a new biotechnological

process by simulation, as optimal production of an

individual compound requires a very specific metabol-

ic performance. This comparability of genome-scale

reconstructions between different species has been

severely hampered by the non-standardized modeling

practice of the different research groups in the past.

With the development of modeling standards (Le

Novère et al. 2005), a universal data format for model

exchange (Hucka et al. 2003) and repositories for

existing models (Schellenberger et al. 2010; Henry

et al. 2010) as well as naming ambiguities (Bernard

et al. 2014), this approach becomes increasingly

feasible.

During the past years, life sciences and biotech-

nology has begun the transformation from data-poor to

a data-rich discipline introducing the need for new

tools of analysis and interpretation of the generated

data. Genome-scale metabolic networks have been

proven useful in contextualizing and analyzing the

Biotechnol Lett (2015) 37:1131–1139 1137
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data acquired by the different omics-techniques. At the

same time, the increase in availability and quality of

omics data pave the way for the generation of more

detailed and context-specific metabolic networks

based on the presence of individual metabolic ac-

tivities. This usage of omics data as a surrogate for the

customization of genome-scale models will increase

in importance as the sensitivity of the omics technolo-

gies is improving. The combination of multi-omics

measurements with metabolic modeling provides a

powerful tool for the detection and elucidation of

unknown relations and interactions. Improvements in

the molecular toolbox for genetic engineering will

allow for a faster realization of model predictions in

the future thereby increasing the speed of model

improvement. Taken together the recent developments

in the metabolic modeling as well as experimental

techniques for generating relevant data are promising

for an increased use of model-driven decision making

in future.
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