1,010 research outputs found

    Insect Resistance Management for Bt Corn : An Assessment of Community Refuge Schemes

    Get PDF
    Because of Bt corn's efficacy in controlling European corn borer, farmers are required to implement an insect resistance management (IRM) program that constrains each farmer to plant no more than 80% of the farm s corn to Bt varieties. This refuge must be planted within a half-mile of Bt corn and must be contained on the same farm. Community refuge schemes, those which allow the refuge area to be planted on a neighboring farm, have been proposed. In this analysis, we estimate the potential gains to all farms in the community in two representative locations: Pennsylvania and Iowa. The results of a decision analysis model show that the potential gains are very small; the greatest is only 652overa2000acrecommunity(652 over a 2000-acre community (0.33 per acre). This gain would almost certainly be offset by the costs of developing such a community.Includes bibliographical reference

    Fitting EXAFS data using molecular dynamics outputs and a histogram approach

    No full text
    The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption fine structure (EXAFS) data from coordination numbers is nontrivial, particularly for particles <5 nm in diameter, for which the undercoordination of surface atoms becomes an increasingly significant contribution to the average coordination number. These undercoordinated atoms have increased degrees of freedom over those within the core of the particle, which results in an increase in the degree of structural disorder with decreasing particle size. This increase in disorder, however, is not accounted for by the standard means of EXAFS analysis, where each coordination shell is fitted with a single bond length and disorder term. In addition, the surface atoms of nanoparticles have been observed to undergo a greater contraction than those in the core, further increasing the range of bond distances. Failure to account for this structural change results in an increased disorder being measured, and therefore, a lower apparent coordination number and corresponding particle size are found. Here, we employ molecular dynamics (MD) simulations for a range of nanoparticle sizes to determine each of the nearest neighbor bond lengths, which were then binned into a histogram to construct a radial distribution function (RDF). Each bin from the histogram was considered to be a single scattering path and subsequently used in fitting the EXAFS data obtained for a series of carbon-supported platinum nanoparticles. These MD-based fits are compared with those obtained using a standard fitting model using Artemis and the standard model with the inclusion of higher cumulants, which has previously been used to account for the non-Gaussian distribution of neighboring atoms around the absorber. The results from all three fitting methods were converted to particle sizes and compared with those obtained from transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements. We find that the use of molecular dynamics simulations resulted in an improved fit over both the standard and cumulant models, in terms of both quality of fit and correlation with the known average particle size

    Session 1.3: Health Protection and Disease Prevention: A Critical Review of Experience

    Get PDF
    This is a summary of the presentations and discussion of Health Protection and Disease Prevention of the Conference, Health Aspects of the Tsunami Disaster in Asia, convened by the World Health Organization (WHO) in Phuket, Thailand, 04-06 May 2005. The topics discussed included issues related health protection and disease prevention as pertaining to the responses to the damage created by the Tsunami. It is presented in the following major sections:(1) key questions; (2) national perspectives; (3) an international perspective; (4) laboratory aspects in disease surveillance; and (5) partnershi

    The spread of epidemic disease on networks

    Full text link
    The study of social networks, and in particular the spread of disease on networks, has attracted considerable recent attention in the physics community. In this paper, we show that a large class of standard epidemiological models, the so-called susceptible/infective/removed (SIR) models can be solved exactly on a wide variety of networks. In addition to the standard but unrealistic case of fixed infectiveness time and fixed and uncorrelated probability of transmission between all pairs of individuals, we solve cases in which times and probabilities are non-uniform and correlated. We also consider one simple case of an epidemic in a structured population, that of a sexually transmitted disease in a population divided into men and women. We confirm the correctness of our exact solutions with numerical simulations of SIR epidemics on networks.Comment: 12 pages, 3 figure

    Probability of emergence of antimalarial resistance in different stages of the parasite life cycle

    Get PDF
    Understanding the evolution of drug resistance in malaria is a central area of study at the intersection of evolution and medicine. Antimalarial drug resistance is a major threat to malaria control and directly related to trends in malaria attributable mortality. Artemisinin combination therapies (ACT) are now recommended worldwide as first line treatment for uncomplicated malaria, and losing them to resistance would be a disaster for malaria control. Understanding the emergence and spread of antimalarial drug resistance in the context of different scenarios of antimalarial drug use is essential for the development of strategies protecting ACTs. In this study, we review the basic mechanisms of resistance emergence and describe several simple equations that can be used to estimate the probabilities of de novo resistance mutations at three stages of the parasite life cycle: sporozoite, hepatic merozoite and asexual blood stages; we discuss the factors that affect parasite survival in a single host in the context of different levels of antimalarial drug use, immunity and parasitaemia. We show that in the absence of drug effects, and despite very different parasite numbers, the probability of resistance emerging at each stage is very low and similar in all stages (for example per-infection probability of 10−10–10−9 if the per-parasite chance of mutation is 10−10 per asexual division). However, under the selective pressure provided by antimalarial treatment and particularly in the presence of hyperparasitaemia, the probability of resistance emerging in the blood stage of the parasite can be approximately five orders of magnitude higher than in the absence of drugs. Detailed models built upon these basic methods should allow us to assess the relative probabilities of resistance emergence in the different phases of the parasite life cycle

    π+\pi^+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γpnπ+\gamma p \to n \pi^+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.
    corecore