1,572 research outputs found

    Solution composition and particle size effects on the dissolution and solubility of a ThO2 microstructural analogue for UO2 matrix of nuclear fuel

    Get PDF
    The objective of this study was to investigate the dissolution rate of ThO2 which was synthesised to approximate, as closely as possible, the microstructure of UO2 in a nuclear fuel matrix. The optimal sintering temperature for ThO2 pellets was found to be 1750 ℃, which produced pellets with a microstructure similar to UO2 nuclear fuel pellets, with randomly oriented grains ranging in size from 10 to 30 μm. Dissolution was conducted using ThO2 particles of different size fractions (80 to 160 μm and 2 to 4 mm) in the presence and absence of carbonate, in solutions with pH from 2 to 8 and at 80 ℃. Dissolution rates were calculated from Th released from the solid phase to solution. Particles of ThO2 were also leached with 1 M HNO3 at 80 ℃ in order to investigate the morphological changes at the particle surfaces. The concentration of Th was found to be ≥ 10–9 mol/L at pH ≤ 4, lower than the theoretical solubility of crystalline ThO2. At higher pH values, from 4 to 8, the measured concentrations (10−10 to 10–12 mol/L) were between the theoretical solubility of ThO2 and Th(OH)4. Grain boundaries were shown to exert an influence on the dissolution of ThO2 particles. Using high resolution aqueous solution analysis, these data presented here extend the current understanding of Th solubility in solutio

    New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz

    Full text link
    We present new measurements of the cosmic microwave background (CMB) polarization from the final season of the Cosmic Anisotropy Polarization MAPper (CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz) correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After selection criteria were applied, 956 (939) hours of data survived for analysis of W-band (Q-band) data. Two independent and complementary pipelines produced results in excellent agreement with each other. A broad suite of null tests as well as extensive simulations showed that systematic errors were minimal, and a comparison of the W-band and Q-band sky maps revealed no contamination from galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands in the range 200 < l < 3000, extending the range of previous measurements to higher l. The E-mode spectrum, which is detected at 11 sigma significance, is in agreement with cosmological predictions and with previous work at other frequencies and angular resolutions. The BB power spectrum provides one of the best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap

    Climate change and occupational health: A South African perspective

    Get PDF
    A number of aspects of human health are caused by, or associated with, local climate conditions, such as heat and cold, rainfall, wind and cloudiness. Any of these aspects of health can also be affected by climate change, and the predicted higher temperatures, changes in rainfall, and more frequent extreme weather conditions will create increased health risks in many workplaces. Important occupational health risks include heat stress effects, injuries due to extreme weather, increased chemical exposures, vector-borne diseases and under-nutrition.  In South Africa (SA), and many other parts of the world experiencing a hot season each year, the effects of heat stress may be of greatest relevance to the large working populations in mining, agriculture, construction, quarries and outdoor services. Factory and workshop heat will also become an increasing problem in the numerous workplaces without effective cooling systems. SA was the location for some of the most detailed research on heat effects at work in mines in the 1950s and 1960s, and the future will bring new challenges not only for mines, but also for many other workplaces. The climate model trends for this century indicate that the heat exposure may increase by 2 - 4°C during the hottest months, and this would change the occupational heat situation from ‘low risk’ to ‘moderate or high risk’ in much of SA.

    An archaeology of borders: qualitative political theory as a tool in addressing moral distance

    Get PDF
    Interviews, field observations and other qualitative methods increasingly are being used to inform the construction of arguments in normative political theory. This article works to demonstrate the strong salience of some kinds of qualitative material for cosmopolitan arguments to extend distributive boundaries. The incorporation of interviews and related qualitative material can make the moral claims of excluded others more vivid and possibly more difficult to dismiss by advocates of strong priority to compatriots in distributions. Further, it may help to promote the kind of perspective taking that has been associated with actually motivating a willingness to aid by individuals. Illustrative findings are presented from field work conducted for a normative project on global citizenship, including interviews with unauthorized immigrants and the analysis of artifacts left behind on heavily used migrant trails

    Robust avoidance of edge-localized modes alongside gradient formation in the negative triangularity tokamak edge

    Full text link
    In a series of high performance diverted discharges on DIII-D, we demonstrate that strong negative triangularity (NT) shaping robustly suppresses all edge-localized mode (ELM) activity over a wide range of plasma conditions: ⟨n⟩=0.1−1.5×1020\langle n\rangle=0.1-1.5\times10^{20}m−3^{-3}, Paux=0−15P_\mathrm{aux}=0-15MW and ∣Bt∣=1−2.2|B_\mathrm{t}|=1-2.2T, corresponding to Ploss/PLH08∼8P_\mathrm{loss}/P_\mathrm{LH08}\sim8. The full dataset is consistent with the theoretical prediction that magnetic shear in the NT edge inhibits access to ELMing H-mode regimes; all experimental pressure profiles are found to be at or below the infinite-nn ballooning stability limit. Importantly, we also report enhanced edge pressure gradients at strong NT that are significantly steeper than in traditional ELM-free L-mode plasmas and provide significant promise for NT reactor integration.Comment: 5 pages, 5 figure

    First measurements of the polarization of the cosmic microwave background radiation at small angular scales from CAPMAP

    Full text link
    Polarization results from the Cosmic Anisotropy Polarization MAPper (CAPMAP) experiment are reported. These are based upon 433 hours, after cuts, observing a 2 square degree patch around the North Celestial Pole (NCP) with four 90 GHz correlation polarimeters coupled to optics defining 4\arcmin beams. The E-mode flat bandpower anisotropy within ℓ=940−300+330\ell=940^{+330}_{-300} is measured as 66−29+69μ^{+69}_{-29} \muK2^2; the 95% Confidence level upper limit for B-mode power within ℓ=1050−520+590\ell=1050^{+590}_{-520} is measured as 38 μ\muK2^2.Comment: 4 pages, 2 figures; corrected formatting and comments of second version, identical in substance. In the first version the wrong concordance model was used, results (fit to multiplier to concordance model) and figures have been updated to the proper one. In the first version the central 68% regions were quoted, while now the 68% confidence intervals of highest posterior density are give

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
    • …
    corecore