886 research outputs found

    On arithmetic partitions of Z_n

    Get PDF
    Generalizing a classical problem in enumerative combinatorics, Mansour and Sun counted the number of subsets of Zn\Z_n without certain separations. Chen, Wang, and Zhang then studied the problem of partitioning Zn\Z_n into arithmetical progressions of a given type under some technical conditions. In this paper, we improve on their main theorems by applying a convolution formula for cyclic multinomial coefficients due to Raney-Mohanty.Comment: 10 pages, 1 figure, European J. Combin. (2008), doi:10.1016/j.ejc.2008.11.00

    Perceiving "Complex Autonomous Systems" in Symmetry Dynamics: Elementary Coordination Embedding in Circadian Cycles

    Get PDF
    This study explored the biological autonomy and control of function in circumstances that assessed the presumed relationship of an organism with an environmental cycle. An understanding of this behavior appeals to the organism–environment system rather than just the organism. Therefore, we sought to uncover the laws underlying end-directed capabilities by measuring biological characteristics (motor synchrony) in an environmental cycle (circadian temperature). We found that the typical elementary coordination (bimanual) stability measure varied significantly as a function of the day–night temperature cycle. While circadian effects under artificially manipulated temperatures were not straightforward during the day–night temperature cycle, the circadian effect divided by the ordinary circadian rhythm remained constant during the day–night cycle. Our observation of this direct, robust relationship between the biological characteristics (body temperature and motor synchrony) and environmental processes (circadian temperature cycle) could mirror the adaptation of our biological system to the environment

    Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED

    Full text link
    The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)- and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4, 2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too.Comment: LaTeX file, 17 pages, journal versio

    BRST Quantization of String Theory in AdS(3)

    Full text link
    We study the BRST quantization of bosonic and NSR strings propagating in AdS(3) x N backgrounds. The no-ghost theorem is proved using the Frenkel-Garland-Zuckerman method. Regular and spectrally-flowed representations of affine SL(2,R) appear on an equal footing. Possible generalizations to related curved backgrounds are discussed.Comment: JHEP style, 23 pages; v2:minor changes and references added; v3: typos corrected, version to appear in JHEP; v4: one reference adde

    Continuous-distribution puddle model for conduction in trilayer graphene

    Full text link
    An insulator-to-metal transition is observed in trilayer graphene based on the temperature dependence of the resistance under different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs. At large gate voltages excitation of electron-hole pairs is suppressed, and the resistance increases with increasing temperature because of the enhanced electron-phonon scattering. We find that the simple model with overlapping conduction and valence bands, each with quadratic dispersion relations, is unsatisfactory. Instead, we conclude that impurities in the substrate that create local puddles of higher electron or hole densities are responsible for the residual conductivity at low temperatures. The best fit is obtained using a continuous distribution of puddles. From the fit the average of the electron and hole effective masses can be determined.Comment: 18 pages, 5 figure

    Abelian 2-form gauge theory: superfield formalism

    Full text link
    We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for {\it all} the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). One of the salient features of our present investigation is that the above nilpotent (anti-)BRST symmetry transformations turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari (CF) type of restriction. The latter condition emerges due to the application of our present superfield formalism. The actual CF condition, as is well-known, is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that our present 4D Abelian 2-form gauge theory imbibes some of the key signatures of the 4D non-Abelian 1-form gauge theory. We briefly comment on the generalization of our supperfield approach to the case of Abelian 3-form gauge theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio

    Effective Actions and Phase Fluctuations in d-wave Superconductors

    Get PDF
    We study effective actions for order parameter fluctuations at low temperature in layered d-wave superconductors such as the cuprates. The order parameter lives on the bonds of a square lattice and has two amplitude and two phase modes associated with it. The low frequency spectral weights for amplitude and relative phase fluctuations is determined and found to be subdominant to quasiparticle contributions. The Goldstone phase mode and its coupling to density fluctuations in charged systems is treated in a gauge-invariant manner. The Gaussian phase action is used to study both the cc-axis Josephson plasmon and the more conventional in-plane plasmon in the cuprates. We go beyond the Gaussian theory by deriving a coarse-grained quantum XY model, which incorporates important cutoff effects overlooked in previous studies. A variational analysis of this effective model shows that in the cuprates, quantum effects of phase fluctuations are important in reducing the zero temperature superfluid stiffness, but thermal effects are small for T<<TcT << T_c.Comment: Some numerical estimates corrected and figures changed. to appear in PRB, Sept.1 (2000

    A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block

    Full text link
    A protocol for quantum secure direct communication using blocks of EPR pairs is proposed. A set of ordered NN EPR pairs is used as a data block for sending secret message directly. The ordered NN EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender, Alice encodes the secret message directly on the message-coding sequence and send them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev

    Complex patterns of spontaneous initiations and terminations of reentrant circulation in a loop of cardiac tissue

    Full text link
    A two-component model is developed that consists of a discrete loop of cardiac cells that circulates action potentials together with a cardiac pacing mechanism. Physiological properties of cells such as restitutions of refractoriness and of conduction velocity are given via experimentally measured functions. The dynamics of circulating pulses and their interactions with the pacer are regulated by two threshold relations. Patterns of spontaneous initiations and terminations of reentry (SITR) generated by this system are studied through numerical simulations and analytical observations. These patterns can be regular or irregular; causes of irregularities are identified as the threshold bistability of reentrant circulation (T-bistability) and in some cases, also phase-resetting interactions with the pacer.Comment: 27 pages, 10 figures, 61 references; A version of this paper (same results) is to appear in the Journal of Theoretical Biology; arXiv V2 adds helpful commments to facilitate reading and corrects minor errors in presentatio

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.
    corecore