886 research outputs found
On arithmetic partitions of Z_n
Generalizing a classical problem in enumerative combinatorics, Mansour and
Sun counted the number of subsets of without certain separations. Chen,
Wang, and Zhang then studied the problem of partitioning into
arithmetical progressions of a given type under some technical conditions. In
this paper, we improve on their main theorems by applying a convolution formula
for cyclic multinomial coefficients due to Raney-Mohanty.Comment: 10 pages, 1 figure, European J. Combin. (2008),
doi:10.1016/j.ejc.2008.11.00
Perceiving "Complex Autonomous Systems" in Symmetry Dynamics: Elementary Coordination Embedding in Circadian Cycles
This study explored the biological autonomy and control of function in circumstances that assessed the presumed relationship of an organism with an environmental cycle. An understanding of this behavior appeals to the organism–environment system rather than just the organism. Therefore, we sought to uncover the laws underlying end-directed capabilities by measuring biological characteristics (motor synchrony) in an environmental cycle (circadian temperature). We found that the typical elementary coordination (bimanual) stability measure varied significantly as a function of the day–night temperature cycle. While circadian effects under artificially manipulated temperatures were not straightforward during the day–night temperature cycle, the circadian effect divided by the ordinary circadian rhythm remained constant during the day–night cycle. Our observation of this direct, robust relationship between the biological characteristics (body temperature and motor synchrony) and environmental processes (circadian temperature cycle) could mirror the adaptation of our biological system to the environment
Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED
The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin
(BRST)- and anti-BRST symmetries for the matter fields, present in any
arbitrary interacting gauge theory, has been a long-standing problem in the
framework of superfield approach to BRST formalism. These nilpotent symmetry
transformations are deduced for the four (3 + 1)-dimensional (4D) complex
scalar fields, coupled to the U(1) gauge field, in the framework of augmented
superfield formalism. This interacting gauge theory (i.e. QED) is considered on
a six (4, 2)-dimensional supermanifold parametrized by four even spacetime
coordinates and a couple of odd elements of the Grassmann algebra. In addition
to the horizontality condition (that is responsible for the derivation of the
exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a
new restriction on the supermanifold, owing its origin to the (super) covariant
derivatives, has been invoked for the derivation of the exact nilpotent
symmetry transformations for the matter fields. The geometrical interpretations
for all the above nilpotent symmetries are discussed, too.Comment: LaTeX file, 17 pages, journal versio
BRST Quantization of String Theory in AdS(3)
We study the BRST quantization of bosonic and NSR strings propagating in
AdS(3) x N backgrounds. The no-ghost theorem is proved using the
Frenkel-Garland-Zuckerman method. Regular and spectrally-flowed representations
of affine SL(2,R) appear on an equal footing. Possible generalizations to
related curved backgrounds are discussed.Comment: JHEP style, 23 pages; v2:minor changes and references added; v3:
typos corrected, version to appear in JHEP; v4: one reference adde
Continuous-distribution puddle model for conduction in trilayer graphene
An insulator-to-metal transition is observed in trilayer graphene based on
the temperature dependence of the resistance under different applied gate
voltages. At small gate voltages the resistance decreases with increasing
temperature due to the increase in carrier concentration resulting from thermal
excitation of electron-hole pairs. At large gate voltages excitation of
electron-hole pairs is suppressed, and the resistance increases with increasing
temperature because of the enhanced electron-phonon scattering. We find that
the simple model with overlapping conduction and valence bands, each with
quadratic dispersion relations, is unsatisfactory. Instead, we conclude that
impurities in the substrate that create local puddles of higher electron or
hole densities are responsible for the residual conductivity at low
temperatures. The best fit is obtained using a continuous distribution of
puddles. From the fit the average of the electron and hole effective masses can
be determined.Comment: 18 pages, 5 figure
Abelian 2-form gauge theory: superfield formalism
We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and
anti-BRST symmetry transformations for {\it all} the fields of a free Abelian
2-form gauge theory by exploiting the geometrical superfield approach to BRST
formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a
(4, 2)-dimensional supermanifold parameterized by the four even spacetime
variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian
variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta
\bar\theta + \bar\theta \theta = 0). One of the salient features of our present
investigation is that the above nilpotent (anti-)BRST symmetry transformations
turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari
(CF) type of restriction. The latter condition emerges due to the application
of our present superfield formalism. The actual CF condition, as is well-known,
is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that
our present 4D Abelian 2-form gauge theory imbibes some of the key signatures
of the 4D non-Abelian 1-form gauge theory. We briefly comment on the
generalization of our supperfield approach to the case of Abelian 3-form gauge
theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio
Effective Actions and Phase Fluctuations in d-wave Superconductors
We study effective actions for order parameter fluctuations at low
temperature in layered d-wave superconductors such as the cuprates. The order
parameter lives on the bonds of a square lattice and has two amplitude and two
phase modes associated with it. The low frequency spectral weights for
amplitude and relative phase fluctuations is determined and found to be
subdominant to quasiparticle contributions. The Goldstone phase mode and its
coupling to density fluctuations in charged systems is treated in a
gauge-invariant manner. The Gaussian phase action is used to study both the
-axis Josephson plasmon and the more conventional in-plane plasmon in the
cuprates. We go beyond the Gaussian theory by deriving a coarse-grained quantum
XY model, which incorporates important cutoff effects overlooked in previous
studies. A variational analysis of this effective model shows that in the
cuprates, quantum effects of phase fluctuations are important in reducing the
zero temperature superfluid stiffness, but thermal effects are small for .Comment: Some numerical estimates corrected and figures changed. to appear in
PRB, Sept.1 (2000
A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block
A protocol for quantum secure direct communication using blocks of EPR pairs
is proposed. A set of ordered EPR pairs is used as a data block for sending
secret message directly. The ordered EPR set is divided into two particle
sequences, a checking sequence and a message-coding sequence. After
transmitting the checking sequence, the two parties of communication check
eavesdropping by measuring a fraction of particles randomly chosen, with random
choice of two sets of measuring bases. After insuring the security of the
quantum channel, the sender, Alice encodes the secret message directly on the
message-coding sequence and send them to Bob. By combining the checking and
message-coding sequences together, Bob is able to read out the encoded messages
directly. The scheme is secure because an eavesdropper cannot get both
sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev
Complex patterns of spontaneous initiations and terminations of reentrant circulation in a loop of cardiac tissue
A two-component model is developed that consists of a discrete loop of
cardiac cells that circulates action potentials together with a cardiac pacing
mechanism. Physiological properties of cells such as restitutions of
refractoriness and of conduction velocity are given via experimentally measured
functions. The dynamics of circulating pulses and their interactions with the
pacer are regulated by two threshold relations. Patterns of spontaneous
initiations and terminations of reentry (SITR) generated by this system are
studied through numerical simulations and analytical observations. These
patterns can be regular or irregular; causes of irregularities are identified
as the threshold bistability of reentrant circulation (T-bistability) and in
some cases, also phase-resetting interactions with the pacer.Comment: 27 pages, 10 figures, 61 references; A version of this paper (same
results) is to appear in the Journal of Theoretical Biology; arXiv V2 adds
helpful commments to facilitate reading and corrects minor errors in
presentatio
Angle-resolved photoemission in doped charge-transfer Mott insulators
A theory of angle-resolved photoemission (ARPES) in doped cuprates and other
charge-transfer Mott insulators is developed taking into account the realistic
(LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon
interaction, and a random field potential. In most of these materials the first
band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the
coherent part of the ARPES spectra with the oxygen hole spectral function
calculated in the non-crossing (ladder) approximation and with the exact
spectral function of a one-dimensional hole in a random potential. Some unusual
features of ARPES including the polarisation dependence and spectral shape in
YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or
small. The theory is compatible with the doping dependence of kinetic and
thermodynamic properties of cuprates as well as with the d-wave symmetry of the
superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.
- …